Proline-based Organocatalyst for the Synthesis of Arylidene Benzofuranone Intermediates Enabling the Construction of Aurone-derived Azadienes

Author:

Alsaggaf Azhaar T.1ORCID,Sayed Mostafa2ORCID,Soliman Ahmed I.A.3,Ahmed Mostafa2

Affiliation:

1. Department of Chemistry, Taibah University, Madinah 42353, Saudi Arabia

2. Chemistry Department, Faculty of Science, New Valley University, El-Kharja 72511, Egypt

3. Chemistry Department, Faculty of Science, Assiut University, Assiut 71516, Egypt

Abstract

Organocatalysis has been recognized as a part of chemical research for a long time, and it gained significant attention in catalysis in recent decades. Amine catalyst is a substantial type of organocatalysis, and it is successively employed for the activation of carbonyl compounds. This manuscript delves into the exploration of a proline-based organocatalyst for the synthesis of arylidene benzofuranone intermediates, a critical step that facilitates the subsequent construction of aurone-derived azadienes. In this work, we successfully reported the synthesis of arylidene benzofuranone intermediates through Aldol condensation of benzofuranone with different aldehydes enabled by proline-derived organic catalysts. To achieve this strategy, six examples of amine organocatalysts (A1-A6) were evaluated to showcase the optimal catalyst for this transformation. Moreover, the arylidene benzofuranone intermediates were further employed for the synthesis of interesting aurone-derived azadiene substrates through its reaction with TsNH2. Notably, the using of organocatalyst A6 resulted in the delivery of the product with the best yield (94% isolated yield). Under the optimized conditions, different aromatic and heterocyclic containing aldehydes were effectively tolerated to generate the corresponding arylidene benzofuranone intermediates, which further converted to the azadiene products in high to excellent yield. The claimed structures were confirmed by the spectral analysis.

Publisher

Bentham Science Publishers Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3