Anti-inflammatory Activity and Computational Biology Study of Indole/Pyrimidine Hybrids

Author:

Sayed Mostafa1ORCID,Sayed Ahmed M.2ORCID,El-Rashedy Ahmed A.3,Saddik Abdelreheem Abdelfatah4,Alsaggaf Azhaar T.5ORCID,El-Dean Adel M. Kamal4,Hassanien Reda1,Ahmed Mostafa6

Affiliation:

1. Chemistry Department, Faculty of Science, New Valley University, El-Kharja 72511, Egypt

2. Biochemistry Laboratory, Chemistry Department, Faculty of Science, Assiut University, Assiut 71516, Egypt

3. Natural and Microbial Products Department, National Research Center (NRC), Cairo 12622, Egypt

4. Chemistry Department, Faculty of Science, Assiut University, Assiut 71516, Egypt

5. Department of Chemistry, Taibah University, Madinah 42353, Saudi Arabia

6. Chemistry Department, Faculty of Science, New Valley University, El-Kharja 72511, Egypt

Abstract

Abstract: This research paper embarks on an interdisciplinary exploration encompassing synthetic chemistry, pharmacology, and computational biology. The development of novel anti-inflammatory agents is an imperative endeavor within pharmaceutical research. Pyrimidines and thienopyrimidines are class of heterocyclic compounds that have gained prominence for their diverse pharmacological properties, including potential anti-inflammatory effects. When augmented with an indole moiety, these compounds exhibit structural diversity that can profoundly influence their biological activities. The integration of computational biology specifically molecular docking, plays a crucial role in predicting and understanding the binding interactions between these compounds and select protein targets associated with inflammatory pathways. This computational approach expedites the screening of potential drug candidates and elucidates the molecular underpinnings of their anti-inflammatory actions. Pyrimidine and thienopyrimidines tethering indole scaffold were obtained according to our reported methods. Subsequently, in vivo evaluation of anti-inflammatory is indispensable to gauge the anti-inflammatory potential of these compounds and establish structure-activity relationships. The experimental and computational biology studies of the target indole-pyrimidines hybrids revealed that these compounds can serve as anti-inflammatory agents. This paper can potentially open new avenues for therapeutic strategies against inflammation-associated disorders. The synergy of synthetic innovation, pharmacological evaluation, and computational insights offers a holistic approach to advance our understanding of pyrimidines with an indole moiety as potential agents for mitigating inflammation.

Publisher

Bentham Science Publishers Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3