3D Printing Chitosan-based Nanobiomaterials for Biomedicine and Drug Delivery: Recent Advances on the Promising Bioactive Agents and Technologies

Author:

Naghib Seyed Morteza1,Zarrineh Morteza12,Moepubi Mohammad Reza3

Affiliation:

1. Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, 1684613114, Iran

2. Biomaterials and Tissue Engineering Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, 1517964311, Iran

3. Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia

Abstract

Abstract: 3D bioprinting is a novel technology that has gained significant attention recently due to its potential applications in developing simultaneously controlled drug delivery systems (DDSs) for administering several active substances, such as growth factors, proteins, and drug molecules. This technology provides high reproducibility and precise control over the fabricated constructs in an automated way. Chitosan is a natural-derived polysaccharide from chitin, found in the exoskeletons of crustaceans such as shrimp and crabs. Chitosan-based implants can be prepared using 3D bioprinting technology by depositing successive layers of chitosan-based bioink containing living cells and other biomaterials. The resulting implants can be designed to release drugs at a controlled rate over an extended period. The use of chitosan-based implants for drug delivery has several advantages over conventional drug delivery systems. Chitosan is biodegradable and biocompatible, so it can be safely used in vivo without causing any adverse effects. It is also non-immunogenic, meaning it does not elicit an immune response when implanted in vivo. Chitosan-based implants are also cost-effective and can be prepared using simple techniques. 3D bioprinting is an emerging technology that has revolutionized the field of tissue engineering by enabling the fabrication of complex 3D structures with high precision and accuracy. It involves using computer-aided design (CAD) software to create a digital model of the desired structure, which is then translated into a physical object using a 3D printer. The printer deposits successive layers of bioink, which contains living cells and other biomaterials, to create a 3D structure that mimics the native tissue. One of the most promising applications of 3D bioprinting is developing drug delivery systems (DDSs) to administer several active substances, such as growth factors, proteins, and drug molecules. DDSs are designed to release drugs at a controlled rate over an extended period, which can improve therapeutic efficacy and reduce side effects. Chitosan-based implants have emerged as a promising candidate for DDSs due to their attractive properties, such as biodegradability, biocompatibility, low cost, and non-immunogenicity. 3D bioprinting technology has emerged as a powerful tool for developing simultaneously controlled DDSs for administering several active substances. The rationale behind integrating 3D printing technology with chitosan-based scaffolds for drug delivery lies in the ability to produce customized, biocompatible, and precisely designed systems that enable targeted and controlled drug release. This novel methodology shows potential for advancing individualized healthcare, regenerative treatments, and the creation of cutting-edge drug delivery systems. This review highlights the potential applications of 3D bioprinting technology for preparing chitosan-based implants for drug delivery.

Publisher

Bentham Science Publishers Ltd.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3