Synthesis, Characterization, Molecular Docking Studies and Biological Evaluation of Some Novel 3,5-disubstituted-1-phenyl-4,5-dihydro-1H-pyrazole Derivatives

Author:

Tok Fatih1ORCID,Bayrak İlayda Rumeysa1,Karakaraman Elif1,Soysal İrem1,Çakır Cansel2,Tuna Kübra2,Özgüven Serap Yılmaz3,Sıcak Yusuf4,Öztürk Mehmet2,Koçyiğit-Kaymakçıoğlu Bedia5

Affiliation:

1. Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University, Istanbul, Turkiye

2. Department of Chemistry, Faculty of Sciences, Muğla Sıtkı Koçman University, Muğla, Turkiye

3. Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Trakya University, Edirne, Turkiye

4. Department of Medicinal and Aromatic Plants, Köyceğiz Vocational School, Muğla Sıtkı Koçman University, Muğla, Turkiye

5. Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Biruni University, Istanbul, Turkiye

Abstract

Abstract: In this study, some new pyrazoline derivatives bearing cyano or nitro groups were synthesized. The structures of the compounds were characterized by IR, 1H-NMR, 13C-NMR and elemental analysis data. The ABTS·+, DPPH·, CUPRAC and β-Carotene/linoleic acid assays were carried out to determine the antioxidant activity of the synthesized pyrazolines. Compound P14 showed higher antioxidant activity than the standard substance BHA with IC50 values of 1.71±0.31 μM and 0.29±0.04 μM in ABTS+ and β-carotene/linoleic acid assays, respectively. Compound P12 also exhibited higher antioxidant activities than BHA with an IC50 value of 0.36±0.14 μM in β-carotene/linoleic acid analysis. In activity studies of pyrazolines against cholinesterase (AChE and BChE), tyrosinase, α-amylase and α- glucosidase, compound P1 (IC50 = 39.51±3.80 μM) showed higher activity against α-amylase and compounds P5 and P12 displayed higher activity against α-glucosidase than acarbose with IC50 values of 14.09±0.62 and 83.26±2.57 μM, respectively. The drug-like properties such as Lipinski and Veber, bioavailability and toxicity risks of the synthesized compounds were also evaluated. The compounds were predicted to be compatible with Lipinski and Veber rules, have high bioavailability and low toxicity profiles. Moreover, molecular docking studies were performed to better understand the high activity of the compounds against a-amylase and a-glucosidase enzymes.

Funder

TUBITAK (The Scientific and Technological Research Council of Turkey, Research Project Support Programme for Undergraduate Students

Publisher

Bentham Science Publishers Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3