Dimeric Calix[4]arenes, Synthesis and their Application: A Review

Author:

Zadmard Reza1,Khosravani Sara1,Jalali Mohammad Reza1

Affiliation:

1. Department of Organic Chemistry, Chemistry and Chemical Engineering Research Center of Iran, P.O. Box 14335-186, Tehran, Iran

Abstract

Abstract: Calix[n]arene is an attractive host for molecular recognition due to its accessibility through the hollow cavity and shallow bowl shape and has been used as a receptor over the last 30 years. Calix[n]arene has a small cavity, so designing a flexible molecule to recognize nano to large biomolecules is a challenging goal in host-guest chemistry. Dimeric calix[n]arene is formed by linking two calix[n]arene sub-units to each other. Their considerable structural features and relative diversity of modifying the upper or lower rim represent outstanding and greatly adaptive structures for designing bulky and complex building blocks adequate for selfassembly and molecular recognition. Their ability to form supramolecular structures for a wide range of applications, including the recognition of nano-molecules and large biological molecules, has been extensively studied. This review details the progress of the host-guest chemistry of dimeric calix[n]arenes, emphasizing the synthetic pathways employed for their production and their self-assembly properties. Dimerization of calix[n]arene occurs in two ways (1-through non-covalent bonding such as H-bonding or self-assembly, and 2-through covalent bond formation such as amide bond formation, multi-component reactions and Sonogashira cross-coupling reaction and metathesis reactions). In this work, we focused on dimerization through covalent bond formation, due to having more applications and diverse synthetic applications.

Funder

Chemistry and Chemical Research Center of Iran

Publisher

Bentham Science Publishers Ltd.

Subject

Organic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3