Utilization of Computational Tools for the Discovery of Schiff Base-based 1, 3, 4-thiadiazole Scaffold as SGLT2 Inhibitors

Author:

Sharma Shivani1,Mittal Amit23,Khurana Navneet1

Affiliation:

1. School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara, Punjab, 144411, India

2. School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road,Phagwara, Punjab, 144411, India

3. Faculty of Pharmaceutical Sciences, Desh Bhagat University, Amloh Road, Mandi Gobindgarh, Punjab, 147301, India

Abstract

Background:: High or abnormal blood sugar levels are the hallmark of diabetes mellitus (DM), a metabolic disorder that will be one of the major causes of mortality in 2021. SGLT2 inhibitors have recently shown beneficial effects in the treatment of diabetes by reducing hyperglycemia and glucosuria. Objective:: Molecular docking and ADMET studies of Schiff base- based 1, 3, 4-thiadiazole scaffold as SGLT2 inhibitors. Methods:: Chem draw Ultra 16.0 software was used to draw the structures of newly designed molecules of Schiff base-based 1, 3, 4-thiadiazole, which were then translated into 3D structures. For the molecular docking study, AutoDock Vina 1.5.6 software was employed. Lazar in silico and Swiss ADME predictors were used to calculate in silico ADMET characteristics. Results:: We have designed 111 novel Schiff base-based 1, 3, 4-thiadiazole derivatives as SGLT2 inhibitors. A total of 10 compounds from the thiadiazole series were found to have higher binding affinity to the SGLT2 protein than dapagliflozin. SSS 56 had the best docking scores and binding affinities, with -10.4 Kcal/mol, respectively. In silico ADMET parameters demonstrated that the best binding compounds were found to be non-carcinogenic with LogP = 2.53-4.02. Conclusion:: Novel Schiff base-based 1, 3, 4-thiadiazole were designed and binding affinity was assessed against SGLT2 protein, which resulted in a new lead molecule with a maximal binding affinity and estimated to be noncarcinogenic with an optimal partition coefficient (iLogP = 2.53- 4.02).

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmacology (medical),Endocrinology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3