Robust Predictive Model for Different Cancers using Biomarker Proteins

Author:

Jain Shruti1,Salau Ayodeji Olalekan23

Affiliation:

1. Department of Electronics and Communication Engineering, Jaypee University of Information Technology, Solan, Himachal Pradesh, India

2. Department of Electrical/Electronics and Computer Engineering, Afe Babalola University, Ado-Ekiti, Nigeria

3. Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India

Abstract

Background: When analyzing multivariate data, it can be challenging to quantify and pinpoint relationships between a collection of consistent characteristics. Reliable computational prediction of cancer patient's response to treatment based on their clinical and molecular profiles is essential in this era of precision medicine. This is essential in helping doctors choose the least contaminated and most potent restorative therapies that are now available. Better patient monitoring and selection are now possible in clinical trials. Methods: This research proposes a novel robust model to aid in the diagnosis of various cancers induced by biomarker proteins (Protein Kinase B, MAPK, and mammalian Target of Rapamycin). Later, various medications (Perifosine, Wortmannin, and Rapamycin) were proposed to cure cancer. Various studies were carried out to obtain all of the results, which aid in the identification of various types of cancer. The drugs mentioned in this essay help to ward off cancer. Scaling and normalization were carried out using parallel coordinates plots and correlation tests, respectively. The boosted tree method and kNN with multiple distance approaches were also used to generate a solid model. The medical diagnosis system was enhanced by training the boosted tree technique to identify various tumors. A robust model was validated by predicting various values that were displayed against the observed value and agreed with the advised strategy to locate biomarkers to show the value of our method. Results: The results show that the predicted and observed values agree with each other, especially for MAPK pathways. The observed correlation coefficient (r2) is 0.9847 without intercept and 0.9849 with intercept. The precise computational prediction of the reaction of cancer patients to treatment based on the patient's clinical and molecular profiles is vital in the period of exactitude medicine. Conclusion: A robust model was validated by predicting the different values that were plotted with the observed value, which agrees with the results of the proposed technique to uncover biomarkers and shows the effectiveness of our technique.

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmacology (medical),Endocrinology

Reference30 articles.

1. Bartl R.; Frisch B.; Osteoporosis: Diagnosis, prevention, therapy 2009

2. Lee S.K.; Lo C.S.; Wang C.M.; A computer-aided design mammography screening system for detection and classification of microcalci-fications. Int J Med Inform 2000,60(1),29-57

3. World Health Organization. Breast cancer awareness month in October. 2012.2014. Available From:

4. Cancer Research UK. Breast cancer statistics 2015. Available From:

5. Cancer Research UK. Available From:

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3