Antidiabetic Advancements In Silico: Pioneering Novel Heterocyclic Derivatives through Computational Design

Author:

Mehra Anuradha1ORCID,Mehra Aryan1

Affiliation:

1. Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road (NH-1), Phagwara, Punjab, 144411, India

Abstract

Background:: Deficiency of insulin signaling in type 2 diabetes results from insulin resistance or defective insulin secretion and induced hyperglycemia. By reducing glycated hemoglobin, SGLT2 inhibitors improve hyperuricemia, blood lipids, and weight loss without increasing the risk of hypoglycemia. By targeting this pathway, SGLT2 inhibitors can become a prominent target in the management of type 2 diabetes. Objective:: This study aimed to carry out the molecular docking and ADMET prediction of novel imidazo(2,1-b)-1,3,4 thiadiazole derivatives as SGLT2 inhibitors. Methods:: The chemical structures of 108 molecules were drawn by using ChemDraw Professional 15.0. Further, their energy minimization was also carried out by using Chem Bio Draw three-dimensional (3D) Ultra 12.0. Molecular docking was also carried out using a Molegro Virtual Docker to identify the best-fitting molecules and to identify the potential leads on the basis of dock score. The predicted parameters of drug-likeness according to Lipinski’s rule of five, such as molecular weight, log P, hydrogen bond acceptor, hydrogen bond donors, and number of rotatable bonds of the selected compounds, were predicted using pKCSM software. Results:: About 108 molecules were designed by employing different substitutions on imidazothiadiazole nucleus as SGLT2 inhibitors. Out of these, 10 compounds were found to have better interactions with the active site of SGLT2 protein and the highest dock scores compared to canagliflozin. Compounds 39a and 39b demonstrated good interactions and the highest docking scores of -155.428 and -142.786, respectively. The in silico physicochemical properties of the best compounds were also determined. Additionally, these compounds suggested a good pharmacokinetic profile as per Lipinski's rule of five (orally active drugs). Conclusion:: Novel imidazo (2,1-b)-1,3,4 thiadiazole derivatives were strategically designed, and their binding affinity was meticulously evaluated against the SGLT2 protein. This endeavor yielded pioneering lead compounds characterized by ultimate binding affinity, coupled with optimal ADMET properties in adherence to Lipinski's rule of five and favourable noncarcinogenic profile.

Publisher

Bentham Science Publishers Ltd.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3