Observations of the 9 June 2002 Dryline During IHOP

Author:

Cai Huaqing,Lee Wen-Chau

Abstract

Detailed studies of drylines that do not initiate storms are rare but scientifically important. Studying these null cases will improve the understanding of critical factors separating whether convection would be initiated along a dryline. This observational study presents a null case dryline near the Oklahoma/New Mexico border during the International H2O Project (IHOP_2002) on 9 June 2002. High-resolution observations obtained from an airborne Doppler radar (ELDORA), two water-vapor Differential Absorption Lidar (LEANDRE II and LASE), Learjet dropsondes, as well as aircraft in situ measurements were used to describe the dryline environment and mesoscale structures in both along- and cross-line directions. The 9 June dryline was characterized by a rather broad radar reflectivity thinline with a large moisture gradient. Its updrafts were found generally associated with the local maximum of radar reflectivity; however, they were not colocated. The simultaneous observations from ELDORA and LEANDRE II confirmed that the dryline updrafts tend to be located near its moisture gradient, consistent with previous findings using aircraft in situ measurements. The dryline moisture boundary was found to be greatly modified by mesocyclone circulations, which caused the alongline moisture gradient at certain segments of the dryline to become greater than the cross-line moisture gradient. Twodimensional water vapor fields derived from LEANDRE II across the dryline clearly showed the moisture gradient associated with the dryline and moisture variations on the order of ~ 1 g kg-1 on both sides of the dryline. No storms initiated within the IHOP_2002 domain associated with this dryline owing to unfavorable atmospheric instability conditions and only weak upward forcing near the dryline.

Publisher

Bentham Science Publishers Ltd.

Subject

Atmospheric Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Generalized Navigation Correction Method for Airborne Doppler Radar Data;Journal of Atmospheric and Oceanic Technology;2018-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3