Constitutive Modelling for Anisotropic Damage in Woven E-Glass Reinforcements

Author:

Yang Ping,Tong Ying

Abstract

It is easy for composite laminates to be damaged by relative lower velocity impact which could give rise to internal delamination that will strongly weaken the compressive strength of laminates. In order to predict the occurrence of matrix failure, the elastic-brittle behaviors of fiber-reinforced composites were modeled constitutively by an anisotropic damage model. The dynamic tensile testing was performed at a constant velocity of 2 mm/min until the sample broke to achieve the mechanical parameters of E-glass reinforcements. The elastic constitutive equation and the constitutive damage model were obtained on basis of the fundamental theory of mechanics about the orthotropic constitutive of reinforcements. The methodology for this constitutive model which is developed by Hashin considered both the effect of fiber and matrix failure. Then, the developed constitutive equations were incorporated into the FE (finite element) codes, ABAQUS, through the user subroutine module to simulate the process of projectile impacting GFRP composite laminates. The results show that the material deformation reaches a maximum at 24 μs, then occurs rebound with the increase of the time. The stress of reinforcements traverse section linearly increases outward from 0 MPa to 509.8 MPa. Material damage area increases with the prolonging of time, and for a fixed time, material damage gradually increases from the edges to the center and reaches a constant value of 1, which means the rupture of the damage process.

Publisher

Bentham Science Publishers Ltd.

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3