Performance Analysis of Fuzzy Multilayer Support Vector Machine for Epileptic Seizure Disorder Classification using Auto Regression Features

Author:

Rajendran T.ORCID,Sridhar K.P.ORCID,Deepa S.ORCID

Abstract

Background: Around 1% of the total population in the world suffers from epilepsy, a central nervous system disorder. Epilepsy is the neurological disorder of the human brain which can affect people of all ages. Classification techniques and Signal processing are basic methods in the advancement of an algorithm for seizure detection. The primary procedures of a typical biomedical evaluation and processing framework are data acquisition, feature extraction, preprocessing, and classification. Based on this, seizure detection is performed by using the following two methods. Methods: This paper proposes a technique for the classification of EEG signals to detect the epileptic seizures by using Cascade Forward Backpropagation Neural Network (CFBNN) and Fuzzy Multilayer Support Vector Machine (FMSVM) methods. Results: Finally, the results of developed classifiers are identified with seizure disorder activities. This research concentrated on Parametric Features such as AR (Autoregressive) Burg, AR YuleWalker, AR Covariance, AR Modified Covariance, and Levinson Durbin Recursion. Linear Prediction Coefficient was analyzed with the EEG dataset gathered from Karunya University. The sensitivity, specificity, and accuracy were calculated for the proposed classifiers. Conclusion: The results of the proposed classifiers were computed with minimum and maximum accuracy and these results were compared with the previous results of the classifiers like FFNN, and PNN as shown in the tables. Based on the obtained outputs and calculated parametric functions, the results validated that the FMSVM classifier performed better in the detection of epileptic seizure disorder in terms of accuracy, sensitivity and specificity.

Publisher

Bentham Science Publishers Ltd.

Subject

Biomedical Engineering,Medicine (miscellaneous),Bioengineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A review on software and hardware developments in automatic epilepsy diagnosis using EEG datasets;Expert Systems;2023-06-05

2. Health Monitoring System Using Internet of Things (IoT) Sensing for Elderly People;2022 14th International Conference on Mathematics, Actuarial Science, Computer Science and Statistics (MACS);2022-11-12

3. College Sports Intelligence Using Human–Computer Interaction System for Education;International Journal of Human–Computer Interaction;2022-10-26

4. PCA and SVM Technique for Epileptic Seizure Classification;2021 IEEE International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics (DISCOVER);2021-11-19

5. The Improved ELM Algorithms Optimized by Bionic WOA for EEG Classification of Brain Computer Interface;IEEE Access;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3