An Improved Segmentation and Classifier Approach Based on HMM for Brain Cancer Detection

Author:

Sharma Shruti,Rattan Munish

Abstract

Introduction: Brain tumors are fatal diseases that are spread worldwide and affect all types of age groups. Due to its direct impact on the central nervous system, if tumor cells prevail at certain locations in the brain, the overall functionality of the body is disturbed and chances of a person approaching death are high. Tumors can be cancerous or non-cancerous but in many cases, the chances of complete recovery are less and as a result death rate has increased all over the world despite recent advancements in technology, equipment and awareness. So the main concern is to detect brain related diseases at early stages so that they do not spread into vital parts of brain and disrupt body functions. Also, more precise and accurate technologies are required to serve as aid in the diagnosis, treatment and surgery of brain. Aims & Objectives: Therefore, its high alarming time to monitor mortality statistics and develop faster and accurate methods to curb the situation by simulating tissue deformation and locating cancerous nodes which is currently the prominent area of interest. Methods: A brain tumor is used to design the deformation model. Early stage detection of tumors is difficult from images. Moreover, the accuracy involved is low. Keeping all this into consideration, a machine learning approach has been developed for classification of cancerous and non-cancerous tissues so that the tissues having risk of future problem can also be recognized. The patient’s deformation model can be designed and brain tumor patterns are given as input on the basis of which tumor in the brain is marked. The proposed method of segmentation is based on a statistical model called Hidden Markov Model (HMM) which extricates the cancerous portion out of fed input MRI image along with the calculation of parameters such as Peak Signal-to-Noise Ratio (PSNR), Mean Square Error (MSE), fault rate dust detection and accuracy. Results &Discussion: The results obtained from parametric analysis show that HMM has performed better than the technique of Support Vector Regression (SVR) for brain cancer segmentation in terms of PSNR, MSE, fault rate dust detection and accuracy. So image processing is used in combination with Hidden Markov Model for classification and analysis to which MRI images are fed as input. Conclusion: In this way, integration of artificial intelligence techniques with image processing can serve as a good way for segmentation of tumors and for classification purposes with good accuracy.

Publisher

Bentham Science Publishers Ltd.

Subject

Biomedical Engineering,Medicine (miscellaneous),Bioengineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3