Contribution of Direct Heating, Thermal Conduction and Perfusion During Radiofrequency and Microwave Ablation

Author:

Schramm Wolfgang,Yang Deshan,Wood Bradford J,Rattay Frank,Haemmerich Dieter

Abstract

Both radiofrequency (RF) and microwave (MW) ablation devices are clinically used for tumor ablation. Several studies report less dependence on vascular mediated cooling of MW compared to RF ablation. We created computer models of a cooled RF needle electrode, and a dipole MW antenna to determine differences in tissue heat transfer. We created Finite Element computer models of a RF electrode (Cooled needle, 17 gauge), and a MW antenna (Dipole, 13 gauge). We simulated RF ablation for 12 min with power controlled to keep maximum tissue temperature at 100 ºC, and MW ablation for 6 min with 75 W of power applied. For both models we considered change in electric and thermal tissue properties as well as perfusion depending on tissue temperature. We determined tissue temperature profile at the end of the ablation procedure and calculated effect of perfusion on both RF and MW ablation. Maximum tissue temperature was 100 ºC for RF ablation, and 177 ºC for MW ablation. Lesion shape was ellipsoid for RF, and tear-drop shaped for MW ablation. MW ablation is less affected by tissue perfusion mainly due to the shorter ablation time and higher tissue temperature, but not due to MW providing deeper heating than RF. Both MW and RF applicators only produce significant direct heating within mm of the applicator, with most of the ablation zone created by thermal conduction. Both RF and MW applicators only directly heat tissue in close proximity of the applicators. MW ablation allows for higher tissue temperatures than RF since MW propagation is not limited by tissue desiccation and charring. Higher temperatures coupled with lower treatment times result in reduced effects of perfusion on MW ablation.

Publisher

Bentham Science Publishers Ltd.

Subject

Biomedical Engineering,Medicine (miscellaneous),Bioengineering

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3