Design, Fabrication and Characterization of n-Si Columnar Structures for Solar Cell Applications

Author:

Develioglu Aysegul1,Trabzon Levent1,Alphan Yunus1

Affiliation:

1. Istanbul Technical University, Istanbul, Turkey

Abstract

Background: Glancing Angle Deposition (GLAD) provides oblique deposition and substrate motion to engineer thin film microstructures in three dimensions on nano scale. Using this technique zigzag, chevrons, staircase, post, helical and various type of nanostructures including 3-D multilayers can be obtained from various metals with controllable morphologies. The aim of the study is to increase surface porosity and junction using GLAD method area for thin film solar cells and therefore to increase p-n junction area. This provides efficient charge separation and strong light absorption. Methods: Glancing angle deposition using e-beam evaporation technique has been employed to create 3- D silicon nano-structures on the surface. Al and Ag contact layers were deposited by thermal evaporation technique. Hole-conductor polymer PEDOT: PSS was spin coated onto n type silicon thin film. Reflectance spectra were measured using UV-VIS spectroscopy. Scanning electron microscopy was used to image surface and cross-section with and without PEDOT: PSS. Also, transmission spectra of PEDOT: PSS was measured using UV-VIS spectroscopy. Surface wettability properties and contact angles of silicon samples were measured by contact angle measurement with water. Results: Columnar structures possess less reflection compared to the flat surface depending on surface porosity. This phenomenon shows that these structures can be used as anti-reflection coatings for solar cells and optical devices to decrease reflectivity and increase light harvesting with higher efficiency. Contact angle decreases when surface roughness increases therefore we can see that columnar structures are more hydrophilic compared to dense films. Flat silicon has 98° contact angle while columnar structures have 71° and 61°. PEDOT: PSS exhibits high transparency in the range from 200 to 1100 nm of wavelength of light, which resembles to solar radiation inside the atmosphere. Also, SEM images of the samples show that silicon columnar structures form better contact with PEDOT: PSS than flat surface. Conclusion: GLAD technique has been used to achieve homogenous rough surface by e-beam evaporation. Both cross-sectional and top-view SEM images show that columnar structures have higher porosity than flat surfaces. The response of UV-VIS spectroscopy shows that columnar structures have less reflection due to highly porous surface. With increasing incident flux angle, antireflection property of the surfaces was enhanced by surpassing the surface reflection. Due to the reduced hydrophobicity of porous structures, organic polymer can be distributed homogenously in between the columnar structures with increased p-n junction interface area. PEDOT: PSS is highly conductive, and it is highly transparent material in the range of the wavelength typically seen in the solar radiation. This makes it easier for light to reach to Si interface to generate electrons and holes. These results provide better understanding of Si- based heterojunction solar cells efficiency improvement with surface modification. This study also shows dependency of optical and electrical activity to surface geometry and surface porosity.

Publisher

Bentham Science Publishers Ltd.

Subject

General Engineering,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3