Aluminum Nano Stars with Localized Surface Plasmon Resonance and Field Enhancement

Author:

Sharma Chhaya1,Katyal Jyoti1,Singh Rina2

Affiliation:

1. Amity Institute of Applied Science, Amity University, UP 201331, India

2. CSIR-Central Road Research Institute, New Delhi, India

Abstract

Aim: The Finite Difference Time Domain approach has been used to assess the localised surface plasmon resonance and field enhancement for Al nanostars. The structure's potential as a refractive index sensor has been demonstrated. Background: Research on plasmonics has been possible in a variety of domains, including sensors, SERS, solar cells, and others, due to a tenability in the plasmon wavelength caused by a simple change in shape, size, or external environment. The growth of plasmonics has been greatly aided by the creation of novel ways for creating metallic nanostructures and a large deal of work on the creation of numerical algorithms to cope with arbitrarily shaped metallic nanostructures. The LSPR and field enhancement of an Al nano-star were the main topics of this paper. A larger RIS factor is obtained after adjusting the refractive index sensitivity parameter, making it appropriate for refractive index-based sensor nanostructures. Objective: This study's primary goal is to provide a comparative analysis of the refractive index sensitivity factor for Al nanostars dependent on their size and number of arms. Methods: Al nano star's LSPR and field enhancement have been assessed using the Finite Difference Time Domain (FDTD). Results: By altering the size and number of arms of the nano star, the tenability of the plasmonic peak has been assessed, and it has been found that the peak is sensitive to the ambient dielectric constant. A study has been done on the refractive index sensitivity parameter. A higher sensitivity of about 370 nm/RIU, which is significantly higher than that of other metallic Nanostar (NS), is seen after adjusting the size and number of arms. A wide range of applications is covered by the Al NS field enhancement pattern, which exhibits stronger enhancement with no aggregation at the plasmon peak. Conclusion: For LSPR sensing applications, the impact of modifying the environmental dielectric constant is examined. By changing the size and quantity of the Al NS's arms, we were able to compare the refractive index sensitivity parameter. The bigger size NS exhibits more peaks due to the contribution of the multipole; however, after tuning a number of parameters, better sensitivity in comparison to Au and Ag nanostar has been attained. Al NS can therefore be a promising sensing material for refractive index sensing employing LSPR properties.

Publisher

Bentham Science Publishers Ltd.

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3