Design and Evaluation of Long Acting Biodegradable PLGA Microspheres for Ocular Drug Delivery

Author:

Pandya Anjali1,Athawale Rajani2,Puro Durga1,Bhagwat Geeta1

Affiliation:

1. C.U. Shah College of Pharmacy, S.N.D.T. Women’s University, Mumbai 400 049, Maharashtra,India

2. Prin. K.M. Kundnani College of Pharmacy, Cuffe Parade, Mumbai 400 005, Maharashtra,India

Abstract

Background:: The research work involves the development of PLGA biodegradable microspheres loaded with dexamethasone for intraocular delivery. Objective:: The study aimed to design and evaluate long acting PLGA microspheres for ocular delivery of dexamethasone. Methods:: The present formulation involves the development of long-acting dexamethasone loaded microspheres composed of a biodegradable controlled release polymer, Poly(D,L-lactide-coglycolide) (PLGA), for the treatment of posterior segment eye disorders intravitreally. PLGA with a monomer ratio of 50:50 of lactic acid to glycolic acid was used to achieve a drug release for up to 45 days. Quality by Design approach was utilized for designing the experiments. Single emulsion solvent evaporation technique along with high-pressure homogenization was used to facilitate the formation of microspheres. Results:: Particle size evaluation, drug content and drug entrapment efficiency were determined for the microspheres. Particle size and morphology were observed using Field Emission Gun- Scanning Electron Microscopy (FEG-SEM) and microspheres were in the size range of 1-5 μm. Assessment of drug release was done using in vitro studies and trans retinal permeation was observed by ex vivo studies using goat retinal tissues. Conclusion:: Considering the dire need for prolonged therapeutic effect on diseases of the posterior eye, an intravitreal long-acting formulation was designed. The use of biodegradable polymer with biocompatible degradation products was a rational approach to achieve this aim. The outcome of the present research shows that developed microspheres would provide a long-acting drug profile and reduce the frequency of administration thereby improving patient compliance.

Publisher

Bentham Science Publishers Ltd.

Subject

General Engineering,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3