On-chip Mixing, Pumping and Concentrating Effects by Using AC Electrothermal Flow

Author:

Vafaie Reza H.1

Affiliation:

1. Department of Electrical Engineering, University of Bonab, Bonab 5551761167, Iran

Abstract

Background:Microfluidic manipulation (including: pumping, mixing and concentrating effects) is highly challengeable for bioengineering and on-chip analysis applications such as point-of-care immune-detection systems. In this research we propose a configurable electrode structure to form various manipulation effects including pumping, mixing and concentrating processes by applying an Alternate Current (AC) electrokinetically-driven flow.Methods:By applying an inhomogeneous electric field causes temperature rise accompanied by temperature gradients generation inside the microchannel. As a result, an AC electrothermal flow generates inside the channel, which is efficient to generate mixing, pumping and concentrating effects.Results:The proposed system is studied numerically by Finite-Element-Method, Based on the results, a) bulk fluid velocity of 100 µm/s is achieved by exciting the electrodes in pumping mode, b) complete mixing efficiency is observed in mixing mode, c) for antibody-antigen binding process (concentrating mode), the surface reaction increases by the factor of 9 after 5 seconds of sample loading. Results reveal that the system is highly efficient for bio-fluid mediums.Conclusion:AC electrothermal fluid manipulation process was investigated numerically inside a microchannel for biological buffers. Back and forth fluid motions, clockwise/counter-clockwise rotational vortexes and also antibody-antigen linking enhancement were achieved by engineering the specific electrode patterns. The manipulation efficiency improves by increasing both the amplitude of electric potential and the ionic strength of biofluid. As a result, our proposed configurable device is of interest for onchip immunoassays and point-of-care devices.

Funder

The Deputy of Research of University of Bonab (University of Tabriz)

Publisher

Bentham Science Publishers Ltd.

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3