Formation of the Self-assembled Multilayers Containing the Temperature/ pH Dual-responsive Microgels

Author:

Liu Gang1,Liu Chunlin1,Chen Yuyuan1,Qin Shuai1,Yang Suyuan1,Wu Dun1,Xi Haitao1,Cao Zheng1

Affiliation:

1. Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, China

Abstract

<P>Background: Stimuli-responsive microgels have attracted extensive investigations due to their potential applications in drug delivery, catalysis, and sensor technology. The self-assembled mcirogel films can contain different functional groups (e.g., -COOH, -NH2, -C=ONH2) to interact with specific molecules and ions in water, and their study is becoming increasingly important for developing both absorbent materials and sensor coatings. This paper is aimed to obtain a better understanding of the LbL multilayer formation of microgels and the branched PEI using the mass sensitive QCM. Additionally the influence of the temperature and pH on the formation of the microgel films can be achieved. </P><P> Methods: The temperature and pH sensitive P(NIPAM-co-AA-co-TMSPMA) microgels were prepared by surfactant-free emulsion polymerization and confirmed by FT-IR, laser particle size analysis, and SEM. The obtained microgel and PEI were further used to prepare multilayer thin films by the LbL self-assembly technique monitored by QCM, and their morphology and hydrophilic properties were determined by AFM and water contact angle measurements. </P><P> Results: The thermosensitive and pH sensitive P(NIPAM-co-AA-co-TMSPMA) microgels were prepared by surfactant-free emulsion polymerization. The size and swelling properties of the microgels prepared are highly dependent on the preparation conditions such as the AA and crosslinker content, and microgels showed good temperature and pH responsive properties. SEM images showed that microgels dispersed evenly on the substrate and had a uniform particle size distribution, which was consistent with the light particle size analysis results. Furthermore, multilayer films composed of the negatively charged microgels and the positively charged PEI have been built up by a facile LbL assembly method and the influence of the deposition conditions on their formation was monitored in real time by QCM. Compared to the temperature of 25 °C, the high temperature of 35°C above the phase transition temperature leads to the more adsorbed mass of microgels on the gold surface of QCM sensors. The absorbed mass values at the deposition pH 7 and 10 are 9.82 and 7.28 µg cm-2, respectively, which are much higher than 1.51 µg cm-2 of the layers deposited at pH 4. The water contact angle and AFM both confirmed the wettability properties and morphology of multilayers on the gold surface of QCM sensors. </P><P> Conclusion: The formation of the multilayer films on the gold surface by the layer-by-layer deposition technique of the negatively charged microgels and the oppositely charged PEI can be achieved. The controllable multilayer formation can be attributed to the size difference, changes in the hydrophilic property and surface charge density of microgels responsive to the external temperature and pH.</P>

Funder

Natural Science Foundation of the Jiangsu Higher Education Institutions of China

Publisher

Bentham Science Publishers Ltd.

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3