One-pot Preparation of Cu2(OH)3NO3 Nanosheets and Cu(OH)2 Nanowires

Author:

Zhang Wenzhe1,Yang Ailing1,Bao Xichang2

Affiliation:

1. Department of Physics, College of Information Science and Engineering, Ocean University of China, Qingdao, China

2. Qingdao Institute of Bioenergy & Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China

Abstract

Introduction: By using Cu(NO3)2 as precursor and polyvinylpyrrolidone (PVP) as surfactant, nanosheets of Cu2(OH)3NO3, nanowires of Cu(OH)2 or the mixture of the two were prepared under different molar ratios of OH− to Cu2+. Materials and Methods: The crystal structures and morphologies of the products were characterized by X-Ray Diffraction (XRD) and Transmission Electron Microscope (TEM). Results: When the molar ratio of OH− to Cu2+ in reaction solution is lower than 1.28, pure Cu2(OH)3NO3 nanosheets were obtained. The thickness of one piece of nanosheet is about 167 nm. The Cu2(OH)3NO3 nanosheets consists of two types of crystal structures, monoclinic phase and orthorhombic phase. With increase of the molar ratio of OH− to Cu2+, the monoclinic phase of Cu2(OH)3NO3 was transferred to the orthorhombic phase of Cu2(OH)3NO3. When the molar ratio of OH− to Cu2+ is within 1.28-2.24, the product is the mixture of Cu2(OH)3NO3 nanosheets and Cu(OH)2 nanowires. And when this molar ratio is higher than 2.24, only Cu(OH)2 nanowires were produced. The lengths and the diameters of the Cu(OH)2 nanowires are in the region of 50-250 nm and 10 nm, respectively. Conclusion: The reason of the Cu2(OH)3NO3 nanosheets changing into the Cu(OH)2 nanowires is that the OH− anions replace the NO3 − anions in the layered Cu2(OH)3NO3 nanosheets, which causes the rupture of hydrogen bonds connecting the adjacent layers. The Cu(OH)2 nanowires were not stable and found to become spindled CuO nanosheets in air at room temperature.

Funder

National Natural Science Foundation of China

Publisher

Bentham Science Publishers Ltd.

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3