Science and Technological Understanding of Nano-ionic Resistive Memories (RRAM)

Author:

Dash C.S.1,Prabaharan S.R.S.1

Affiliation:

1. School of Electronics Engineering, Vellore Institute of Technology, Vandalur-Kellambakkam Road, Chennai-600127, India

Abstract

Ion transport in the solid state has been regarded as imperative with regards to high energy density electrochemical storage devices (for instance, batteries) for efficient electric mobility. Of late, there is another niche application involving ion transport in solid state which manifested itself as nonvolatile memory namely memristor. Such memories are classified under the emerging category of novel solid state Resistive Random Access Memories (RRAM). In 2008, HP labs unveiled the first practical memristor device employing TiO2 and non-stoichiometric titania as bilayer stack structure and on both sides of two titania layers platinum (pt) are used as blocking electrode for ions. It is understood that switching fundamentals are correlated to the filamentary conduction in metal oxide memristors owing to the formation and rupture of the filament-like nano-dendrites, one of the key mechanisms widely accepted in the arena of memristor analysis. This paper critically reviews the fundamental materials being employed in novel memristor memories. It is believed that solid electrolytes (fast ion conductors) are the fundamental building blocks of these memories. We have chosen a few archetypes, solid electrolytes are considered and their impact on the state-of-art research in this domain is discussed in detail. An indepth analysis of the fundamentals of resistive switching mechanism involved in various classes of memristive devices viz., Electrochemical Metallization Memories (ECM) and Valence Change Memories (VCM) is elucidated. A few important applications of memristors such as neuristor and artificial synapse in neuromorphic computing are reviewed as well.

Publisher

Bentham Science Publishers Ltd.

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3