Preparation and Chemical/Physical Characterization of Individual Nanoscaled Fibrils

Author:

Subramani Ramesh1,Senthilkumar Praveetha1,Chandran Sharmila2,Kartsev Alexey34,Shavrov Vladimir5,Lega Petr5

Affiliation:

1. Department of Food Processing Technology and Management, PSGR Krishnammal College for Women, Coimbatore, India

2. Department of Physics, PSGR Krishnammal College for Women, Coimbatore, India

3. Computing Center of Far Eastern Branch of the Russian Academy of Sciences (CC FEB RAS), Khabarovsk 680000, Russian Federation

4. Peoples\' Friendship University of Russia (RUDN University), Moscow, 117198, Russia

5. The Kotel’nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Moscow, 125009, Russia

Abstract

Abstract: Polymer-based nanofibril finds its application in various fields including tissue engineering, environmental monitoring, food packaging, and micro/nanoelectromechanical systems. These nanofibrils are subjected to chemical treatment and constant stress, which may cause permanent deformation to the fibrils when it is used. Therefore, the synthesis of well-defined nanofibrils and characterization techniques are key elements in identifying desired chemical and physical properties for suitable applications. Many methods have been developed to prepare individual nanofibrils, including electrospinning, phase separation, template synthesis, and self-assembly. Among all, self-assembly offers simple, efficient, and lowcost strategies that produce high-ordered nanofibrils using noncovalent interactions including hydrogen bonding, electrostatic interactions, π-π interactions, and hydrophobic interactions. The first part of the review provides detailed molecular interactions and simulations that can be controlled to achieve the formation of well-defined individual nanofibrils. The second part of the review describes the various existing tools to characterize the chemical and physical properties of single nanofibrils including atomic force microscopy. In the final part of the review, recently developed novel nanotools that measure the mechanical properties of nanofibrils are described. By bridging the gap between molecular interactions and resulting nanoscale fibirls, physical and chemical properties may lead to the construction of novel nanomaterials in the area of nanoscience and nanotechnology.

Funder

Department of Science and Technology

RFBR, under international bilateral cooperation by the Government of India and Russia

Publisher

Bentham Science Publishers Ltd.

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3