Polymer Anchored Gold Nanoparticles: Synthesis, Characterization and Antimicrobial Activities

Author:

Chowdhury Pranesh1ORCID,Roy Bishnupada1,Mukherjee Suprabhat2,Mukherjee Niladri3,Joardar Nikhilesh3,Roy Debiprasad1,Chowdhury Shreyashi1,Babu Santi P.S.3

Affiliation:

1. Polymer & Nano Research Laboratory, Department of Chemistry, Visva-Bharati University, Santiniketan-731235,India

2. Parasitology Laboratory, Department of Zoology (Centre for Advanced Studies), Visva-Bharati University, Santiniketan-731235,India

3. Department of Zoology, Kazi Nazrul University, Asansol-713340,India

Abstract

Background:: Gold nanoparticles (GNPs) have diverse optical and photo-thermal properties. It is used for diagnostic imaging because of their ability to absorb near infrared (NIR) and X-rays, and their surface enhanced Raman scattering properties. Recently they are used for drug delivery and more particularly photothermal treatment. Their ability to absorb NIR energy and convert it to heat by a Surface Plasmon Resonance mechanism has made these materials promising for the treatment of tumors. GNPs having diameter higher than 1.4-1.5 nm is found nontoxic to the environment. Methods:: In the present work, polymer anchored GNPs are synthesized by reducing AuIII to Au0 in presence of either chitosan or polyvinyl alcohol, which act as in situ reducers cum stabilizers. Microscopic techniques (TEM, SEM and DLS) are used to analyse the size, surface morphology and size distribution respectively. The unique mucoadhesive properties of chitosan particularly make the system promising with respect to antimicrobial (anti-bacteria as well as anti-fungus) activities. An attempt has been made to understand the mechanistic path involved in antimicrobial activities. Antimicrobial potential of chitosan anchored gold nanoparticles (GNPc) are noticed even at very low dose. Results:: The results of bio-chemical analysis (MDA, NBT, DNA fragmentation and overexpression of heat shock protein) clearly explain antimicrobial activities. Additionally, gold chitosan systems interact with microbial DNA and inhibit the action of DNA repair enzyme. Interestingly, in vitro (rat peritoneal MФ) or in vivo (Wistar rat) analysis exhibits negligible cytotoxicy. Conclusion:: Thus the synthesized material (particularly GNPc) is promising as an effective nano therapeutic agent.

Funder

DST

CSIR

Publisher

Bentham Science Publishers Ltd.

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3