Two-terminal Reliability Analysis for Time-evolving and Predictable Delay-tolerant Networks

Author:

Khanna Gaurav1,Chaturvedi Sanjay K.1,Soh Sieteng2

Affiliation:

1. Subir Chowdhury School of Quality and Reliability, Indian Institute of Technology Kharagpur, Kharagpur, India

2. School of Electrical Engineering, Computing and Mathematical Sciences, Faculty of Science and Engineering, Curtin University, Perth, Australia

Abstract

Background: Several techniques are available to evaluate the two-terminal reliability (2TR) of static networks; however, the advent of dynamic networks in recent past, e.g., Delay Tolerant Networks (DTNs), has made this task extremely challenging due to their peculiar characteristics with an associated disruptive operational environment. Recently, a Cartesian product-based method has been proposed to enumerate time-stamped-minimal path sets (TS-MPS)-a precursor to compute the 2TR of such networks. However, it cannot be used to generate time-stamped-minimal cut sets (TS-MCS). TS-MCS cannot only be used as an alternative to generate 2TR but also to compute other unexplored reliability metrics in DTNs, e.g., the weakest link. Objective: To propose a novel approach to enumerate both TS-MPS and TS-MCS of a dynamic network, thereby computing the 2TR of such networks. Methods: The proposed technique converts the time aggregated graph model of a dynamic network into a Line Graph (LG) while maintaining the time-varying graph’s node reachability information. This LG is used thereafter to generate TS-MCS as well as TS-MPS to compute 2TR of the network. Results: The DTN examples are presented to show the efficacy and salient features of our algorithm to obtain 2TR of such networks. Conclusion: The terminologies and techniques used for studying/analyzing network reliability of static networks can be extended to dynamic networks as well, e.g., the notion of minimal path sets to TS-MPS or minimal cut sets to TS-MCS, to assess their network reliability-a potential area of furthering network reliability research.

Publisher

Bentham Science Publishers Ltd.

Subject

Electrical and Electronic Engineering,Electronic, Optical and Magnetic Materials

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3