Modelling Deaths Associated with Road Traffic Accidents and other Factors on Great North Road in Zambia between the Years 2010 and 2016 Using Poisson Models

Author:

Fisa Ronald,Nakazwe Chola,Michelo Charles,Musonda Patrick

Abstract

Background: According to the World Health Organization (WHO), 1.24 million people die annually on the world’s roads, with 20-50 million sustaining non-fatal injuries. More than 85% (1.05 million) of the global deaths due to injuries occur in the developing world. Road traffic deaths and injuries are a major but neglected public health challenge that requires concerted efforts for effective and sustainable prevention. The objectives of the study were to estimate the incidence rate of death from RTAs, to determine factors associated with serious and fatal Road Traffic Accidents (RTAs) and to determine which of the poisson models fit the count data better. Methods: Data was collected from Zambia Police (ZP), Traffic Division on accidents that occurred on the Great North Road (GNR) highway between Lusaka and Kapiri-Mposhi in Zambia from January 1, 2010 to December 31, 2016. Results from standard Poisson regression were compared to those obtained using the Negative Binomial (NB), Zero-Truncated Negative Binomial (ZTNB) and the Zero-Truncated Poisson (ZTP) regression models. Diagnostic tests were used to determine the best fit model. The data was analysed using STATA software, version 14.0 SE (Stata Corporation, College Station, TX, USA). Results: A total of 1, 023 RTAs were analysed in which 1, 212 people died. Of these deaths, 82 (7%) were Juveniles and 1, 130 (93%) were adults. Cause of accident such as pedestrians crossing the road accounted for 30% (310/1,023) while 29% (295/1,023) were as a result of driver’s excessive speed. The study revealed that driving in the early hours of the day (1AM-6AM) as compared to driving in the night (7PM-12AM) had a significant increase in the incidence rate of death from RTAs, Incidence Rate Ratio (IRR) of 2.1, (95% CI={1.01-4.41}), p-value=0.048. Results further showed that public transport as compared to private transport had an increased incidence rate of death from RTAs (IRR=5.65, 95% CI={2.97-10.73}), p-value<0.0001. The two competing models were the ZTP and the ZTNB. The ZTP had AIC=1304.55, BIC= 1336.55, whereas the ZTNB had AIC=742.25 and BIC=819.69. This indicated that the ZTNB with smaller AIC and BIC was the best fit model for the data. Conclusion: There is a reduced incidence of dying if one is using a private vehicle as compared to a public vehicle. Driving in the early hours of the day (1AM and 6AM) had an increased incidence of death from RTAs. This study suggests that when dealing with counts in which there are a few zeros observed such as in serious and fatal RTAs, ZTNB fits the data well as compared to other models.

Funder

Wellcome Trust

Publisher

Bentham Science Publishers Ltd.

Subject

Public Health, Environmental and Occupational Health,Community and Home Care,Health(social science)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3