Ligand Decorated Primaquine Loaded Nanocarriers for Liver Targeting for Triggered Anti-Malarial Activity

Author:

Mehan Paramjot1,Garg Ashish2ORCID,Ajay Kumar3,Mishra Neeraj1ORCID

Affiliation:

1. Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, India

2. Department of P.G. Studies and Research in Chemistry and Pharmacy, Rani Durgavati University Jabalpur, M.P. 482001, India

3. Government Pharmacy Institute, Agamkuan, Patna, India

Abstract

Objective:: The aim of the current research is to formulate a nano delivery system for effective delivery of primaquine for liver targeting to achieve the potential anti-malarial activity. Another objective of current development is to formulate a lactobionic acid conjugated polyphosphazene based nano delivery of primaquine for liver targeting to distinguish anti-malarial activity. Methods:: The particle size, entrapment efficiency, in-vitro drug release pattern, hepatotoxicity, MTT assay, erythrocyte toxicity assay, histopathology study, HepG2 cell uptake study, anti-- malarial study, and organ-distribution was also carried out to estimate the activity and potential features of a nanoparticle system. Results:: The results obtained from the above analysis justify the efficiency and effectiveness of the system. The NMR studies confirm the conjugation pattern and the TEM represents the spherical morphological features of nanoparticles. The controlled release pattern from the in-vitro release study was observed and found to be 73.25% of drug release in 20 hrs and in the nano-size range (61.6± 1.56 nm) by particle size analysis.SGOT level, SGPT, ALP, and Parasitemia level of optimized drug-loaded PEGylated lactobionic acid conjugated polyphosphazene derivatized nanoparticles (FF) was found to lie in the safe range, showing that the formulation is non-toxic to the liver. Primaquine drug-loaded PEGylated lactobionic acid conjugated polyphosphazene polymeric nanoparticles showed higher cell uptake on HepG2 cell lines as compared to the drug-loaded in PEGylated polyphosphazene polymeric nanoparticles and plain drug.Percentage cell viability of drugloaded PEGylated lactobionic acid conjugated polyphosphazene derivatized nanoparticles was decreased by enhancing the concentration of prepared nanoparticle system accessed by MTT assay. Conclusion:: From the studies, it can be concluded that the optimized formulation of drug-loaded PEGylated lactobionic acid conjugated polyphosphazene derivatized nanoparticles showed high liver targeting, least toxicity to the liver, controlled release of the drug, higher anti-malarial activity against hepatocytes at a low dose, more effectiveness, and can be treated as a potential candidate for anti-malarial therapy.

Publisher

Bentham Science Publishers Ltd.

Subject

General Health Professions

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3