Coenzyme Q10 Supplement Rescues Postovulatory Oocyte Aging by Regulating SIRT4 Expression

Author:

Xing Xupeng1,Zhang Jinjing1,Zhang Jingcheng1,Wang Yongsheng1,Wang Jingyi1,Kang Jian1,Quan Fusheng1,Su Jianmin1,Zhang Yong1

Affiliation:

1. College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100,China

Abstract

Background: High-quality of the oocyte is crucial for embryo development and the success of human-assisted reproduction. The postovulatory aged oocytes lose developmental competence with mitochondrial dysfunction and oxidative stress. Coenzyme Q10 (CoQ10) is widely distributed in the membranes of cells and has an important role in the mitochondrial respiration chain against oxidative stress and modulation of gene expression. Objective: The objective of this study is to investigate the functions and mechanisms of CoQ10 on delaying postovulatory oocyte aging. Methods: Quantitative real-time PCR and Immunofluorescence staining were used to determine the expression patterns of the biogenesis genes of CoQ10 in postovulatory aged oocytes compared with fresh oocytes. The mitochondrial function, apoptosis, reactive oxygen species (ROS) accumulation and spindle abnormalities were investigated after treatment with 10 μM CoQ10 in aged groups. SIRT4 siRNA or capped RNA was injected into oocytes to investigate the function of SIRT4 on postovulatory oocyte aging and the relationship between CoQ10 and SIRT4. Results: Multiple CoQ10 biosynthesis enzymes are insufficient, and a supplement of CoQ10 can improve oocyte quality and elevate the development competency of postovulatory aged oocytes. CoQ10 can attenuate the aging-induced abnormalities, including mitochondrial dysfunction, ROS accumulation, spindle abnormalities, and apoptosis in postovulatory aged oocytes. Furthermore, SIRT4, which was first found to be up-regulated in postovulatory aged oocytes, decreased following CoQ10 treatment. Finally, knockdown of SIRT4 can rescue aging-induced dysfunction of mitochondria, and the efficiency of CoQ10 rescuing dysfunction of mitochondria can be weakened by SIRT4 overexpression. Conclusion: Supplement of CoQ10 protects oocytes from postovulatory aging by inhibiting SIRT4 increase.

Funder

National Major Project for Production of Transgenic Breeding

National Natural Science Foundation of China

Publisher

Bentham Science Publishers Ltd.

Subject

General Health Professions

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3