Structural Modifications on CORM-3 Lead to Enhanced Anti-angiogenic Properties Against Triple-negative Breast Cancer Cells

Author:

Kourti Malamati1,Cai Jun1,Jiang Wen1,Westwell Andrew D.2

Affiliation:

1. Cardiff China Medical Research Collaborative, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, United Kingdom

2. School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, CF10 3NB, United Kingdom

Abstract

Purpose: Carbon monoxide-releasing molecules (CORMs) are a special class of organometallic complexes that have been reported to offer beneficial effects against different conditions including several subtypes of cancer. Especially for the aggressive and poorly treated triplenegative breast cancer (TNBC), early CORMs have been shown to diminish malignant angiogenesis and may be considered as an alternative approach. So, this study aimed at testing novel CORM molecules against angiogenesis in TNBC seeking potent drug candidates for new therapies. Methods: Based on previous studies, CORM-3 was chosen as the lead compound and a group of 15 new ruthenium-based CORMs was synthesized and subsequently evaluated in vitro for potential anti-angiogenic properties. Results: A similar anti-angiogenic behaviour to the lead complex was observed and a new CORM, complex 4, emerged as a promising agent from this study. Specifically, this complex offered better inhibition of the activation of VEGFR2 and other downstream proteins of vascular endothelial cells. Complex 4 also retained the ability of the parent molecule to reduce the upregulated VEGF expression from TNBC cells and inhibit endothelial cell migration and new vessel formation. The lack of significant cytotoxicity and the downregulating activity over the cytoprotective enzyme haem oxygenase-1 (HO-1) in cancer cells may also favour CORMs against this poorly treated subtype of breast cancer. Conclusions: Since the anti-angiogenic approach is one of the few available targeted strategies against TNBC, both CORM-3 and the new complex 4 should be considered for further research as combination agents with existing anti-angiogenic drugs for more effective treatment of malignant angiogenesis in TNBC.

Funder

Cardiff University

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3