Computational and synthetic biology approaches for the biosynthesis of antiviral and anticancer terpenoids from Bacillus subtilis.

Author:

Shukla Vibha1,Runthala Ashish2,Rajput Vikrant Singh3,Chandrasai Potla Durthi4,Tripathi Anurag5,Phulara Suresh Chandra2ORCID

Affiliation:

1. Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow-226001, , India

2. Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur-522502, Andhra Pradesh, , India

3. School of Biotechnology, Jawaharlal Nehru University, New Delhi-110067, , India

4. Department of Biotechnology, National Institute of Technology Warangal, Warangal-506004, Telangana, , India

5. Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, , India

Abstract

: Recent advancements in medicinal research have identified several antiviral and anticancer terpenoids that are usually deployed as a source of flavor, fragrances and pharmaceuticals. Under the current COVID-19 pandemic conditions, natural therapeutics with least side effects are the need of the hour to save the patients, especially, which are pre-affected with other medical complications. Although, plants are the major sources of terpenoids; however, for the environmental concerns, the global interest has shifted to the biocatalytic production of molecules from microbial sources. The gram-positive bacterium Bacillus subtilis is a suitable host in this regard due to its GRAS (generally regarded as safe) status, ease in genetic manipulations and wide industrial acceptability. The B. subtilis synthesizes its terpenoid molecules from 1-deoxy-d-xylulose-5-phosphate (DXP) pathway, a common route in almost all microbial strains. Here, we summarize the computational and synthetic biology approaches to improve the production of terpenoid-based therapeutics from B. subtilis by utilizing DXP pathway. We focus on the in-silico approaches for screening the functionally improved enzyme-variants of the two crucial enzymes namely, the DXP synthase (DXS) and farnesyl pyrophosphate synthase (FPPS). The approaches for engineering the active sites are subsequently explained. It will be helpful to construct the functionally improved enzymes for the high-yield production of terpenoid-based anticancer and antiviral metabolites, which would help to reduce the cost and improve the availability of such therapeutics for the humankind.

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3