Synthesis, Molecular Docking and Mosquitocidal Efficacy of Lawsone and its Derivatives Against the Dengue Vector Aedes aegypti L. (Diptera: Culicidae)

Author:

Stalin Antony1ORCID,Dhivya Paul2,Lin Ding1,Feng Yue3,Asharaja Antony Cruz4,Gandhi Munusamy Rajiv5,Kannan Balakrishnan Senthamarai6,Kandhasamy Subramani7,Reegan Appadurai Daniel8,Chen Yuan1

Affiliation:

1. State Key Laboratory of Subtropical Silviculture, Department of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China and Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China

2. Department of Chemistry, Nirmala College for Women, Coimbatore 641018, Tamil Nadu, India

3. College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China

4. P.G. and Research Department of Zoology, Pasumpon Muthuramalinga Thevar College, Melaneelithanallur 627 953, Sankarankovil, Tenkasi, Tamil Nadu, India

5. National Biodiversity Authority, 5th Floor, CSIR Road, TICEL Bio Park, Taramani, Chennai 600113, India

6. Department of Chemistry, Tirunelveli Dakshina Mara Nadar Sangam (TDMNS) College, Valliyur, Tirunelveli 627113, Tamil Nadu, India

7. Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India

8. National Centre for Disease Control, NTI Campus, Ballary Road, Bangalore 560003, Karnataka, India

Abstract

Background: Aedes aegypti is the primary dengue vector, a significant public health problem in many countries. Controlling the growth of Ae. aegypti is the biggest challenge in the mosquito control program, and there is a need for finding bioactive molecules to control Ae. aegypti in order to prevent dengue virus transmission. Objective: To assess the mosquitocidal property of lawsone and its 3-methyl-4H-chromen-3-yl-1-phenylbenzo[6,7]chromeno[2,3,c]pyrazole-dione derivatives (6a-6h) against various life stages of Ae. aegypti. Besides, to study the mode of action of the active compound by molecular docking and histopathological analysis. Methods: All derivatives were synthesized from the reaction between 2-hydroxy-1,4-naphthoquinone, chromene-3-carbaldehyde, and 1-phenyl-3-methyl-pyrazol-5-one by using one pot sequential multicomponent reaction. The mosquito life stages were subjected to diverse concentrations ranging from 1.25, 2.5, 5.0, and 10 ppm for lawsone and its derivatives. The structure of all synthesized compounds was characterized by spectroscopic analysis. Docking analysis was performed using autodock tools. Midgut sections of Ae. aegypti larvae were analyzed for histopathological effects. Results: Among the nine compounds screened, derivative 6e showed the highest mortality on Ae. aegypti life stages. The analyzed LC50 and LC90 results of derivative 6e were 3.01, 5.87 ppm, and 3.41, 6.28 ppm on larvae and pupae of Ae. aegypti, respectively. In the ovicidal assay, the derivative 6e recorded 47.2% egg mortality after 96-hour post-exposure to 10 ppm concentration. In molecular docking analysis, the derivative 6e confirmed strong binding interaction (-9.09 kcal/mol and -10.17 kcal/mol) with VAL 60 and HIS 62 of acetylcholinesterase 1 (AChE1) model and LYS 255, LYS 263 of kynurenine aminotransferase of Ae. aegypti, respectively. The histopathological results showed that the derivative 6e affected the columnar epithelial cells (CC) and peritrophic membrane (pM). Conclusion: The derivative 6e is highly effective in the life stages of Ae. aegypti mosquito and it could be used in the integrated mosquito management programme.

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3