Synthesis and Antibacterial Activities of Amidine Substituted Monocyclic β-Lactams

Author:

Zhai Lijuan1,He Lili1,Liu Yuanbai1,Myo Ko Ko2,Iqbal Zafar1,Sun Jian1,Ji Jinbo1,Ji Jingwen1,Mu Yangxiu1,Gao Yuanyu1,Tang Dong1,Yang Haikang1,Yang Zhixiang1

Affiliation:

1. Ningxia Centre of Organic Synthesis and Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, No. 590, Huanghe East Road, Jinfeng District, Yinchuan, Ningxia 750002, P.R. China

2. Ningxia Centre of Organic Synthesis and Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, No. 590, Huanghe East Road, Jinfeng District, Yinchuan, Ningxia 750002, P.R. China | Department of Chemistry, Kalay University, Kalay 03044, Sagaing Region, Myanmar

Abstract

Background: Mononcyclic β-lactams are regarded as the most resistant class of β-lactams against a series of β-lactamases, although they possess limited antibacterial activity. Aztreonam, being the first clinically approved monobactam, needs broad-spectrum efficacy through structural modification. Objective: We strive to synthesize a number of monocyclic β-lactams by varying the substituents at N1, C3, and C4 positions of azetidinone ring and study the antimicrobial effect on variable bacterial strains. Methods: Seven new monobactam derivatives 23a-g, containing substituted-amidine moieties linked to the azetidinone ring via thiazole linker, were synthesized through multistep synthesis. The final compounds were investigated for their in vitro antibacterial activities using the broth microdilution method against ten bacterial strains of clinical interest. The minimum inhibitory concentrations (MICs) of newly synthesized derivatives were compared with aztreonam, ceftazidime, and meropenem, existing clinical antibiotics. Results: All compounds 23a-g showed higher antibacterial activities (MIC 0.25 μg/mL to 64 μg/mL) against tested strains as compared to aztreonam (MIC 16 μg/mL to >64 μg/mL) and ceftazidime (MIC >64 μg/mL). However, all compounds, except 23d, exhibited lower antibacterial activity against all tested bacterial strains compared to meropenem. Conclusion: Compound 23d showed comparable or improved antibacterial activity (MIC 0.25 μg/mL to 2 μg/mL) to meropenem (MIC 1 μg/mL to 2 μg/mL) in the case of seven bacterial species. Therefore, compound 23d may be a valuable lead target for further investigations against multi-drug resistant Gram-negative bacteria.

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3