Polyethylene Glycol Acts as a Mechanistic Stabilizer of L-asparaginase: A Computational Probing

Author:

Sindhu Rajashekar1,Pradeep Hanumanthappa1,Manonmani Haravey K.1

Affiliation:

1. Food Protectants and Infestation Control Dept., CSIR-Central Food Technological Research Institute, Mysore – 570 020, India

Abstract

Background: L-asparaginase (L-ASN) is an anti-cancer enzyme therapeutic drug that exerts cytotoxicity via inhibition of protein synthesis through depletion of L-asparagine in the tumor microenvironment. The therapeutic performance of the native drug is partial due to the associated instability, reduced half-life and immunogenic complications. Objective: In this study, we attempted the modification of recombinant L-asparaginase with PEG and an integrated computational strategy to probe the PEGylation in the protein to understand the biological stability/activity imparted by PEG. Methods: In vitro PEGylation of recombinant L-ASN was carried out and further evaluated in silico. Results: PEGylation enhanced thermal and pH activities with extended serum half-life and resistance to proteases compared to the native enzyme. The molecular dynamics analysis revealed intricate interactions required in the coupling of PEG to L-asparaginase to bestow stronger binding affinity of L-asparagine moiety towards L-asparaginase. PEG-asparagine complex ensured stable conformation over both the native protein and asparagine-protein complex thus elucidating the PEG-induced stable conformation in the protein. PEG mechanistically stabilized L-asparaginase through inducing pocket modification at the receptor to adapt to the cavity. Conclusion: The study provides the rationale of PEGylation in imparting the stability towards Lasparaginase which would expand the potential application of L-asparaginase enzyme for the effective treatment of cancer.

Funder

Department of Science and Technology (DST) New Delhi, India.

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3