Incorporating Antimicrobial Activity During Synthesis of New Acid-Azo Dyes: Thermal Stability and Application on Various Fabrics

Author:

Sarwar Ambreen1,Jabbar Abdul12,Riaz Saadia1,Parveen Samina1,Sagheer Shafia1,Choudhary Muhammad Iqbal1

Affiliation:

1. International Center for Chemical and Biological Sciences, HEJ, Karachi, 75400, Pakistan

2. Textile Institute of Pakistan, I.C.C.B.S., Karachi, 75400, Pakistan

Abstract

Background:: Textile materials are susceptible to microbial attack as they provide suitable conditions for their growth. The microbes grow with normal body secretions on garments. These microbes are responsible for the weakening, brittleness, and discoloration of the substrate. Furthermore, they cause many health issues to the wearer, including dermal infection, bad odour etc. They threaten the human health as well as create tenderness in fabric. Objectives:: Usually, antimicrobial textiles are prepared by applying antimicrobial finishes after dyeing, which is an expensive approach. Concerning these adversities, in the present study, a series of antimicrobial acid-azo dyes have been synthesized by incorporating antimicrobial sulphonamide moiety into the dye molecules during its synthesis. Methods:: A commercially available sulphonamide-based compound, sulfadimidine Na-salt was used as a diazonium component and coupled with different aromatic amines to get desired dye molecules. Since dyeing and finishing are two separate energy-intensive processes, in the current research work, an approach to combine both processes in one step has been adopted that would be economical, time-saving, and environment friendly. Structures of the resultant dye molecules have been confirmed using different spectral techniques such as Mass spectrometry, 1H-NMR spectroscopy, FT-IR, and UV-Visible spectroscopy. Results:: Thermal stability of the synthesized dyes was also determined. These dyes have been applied to wool and nylon-6 fabrics. Their various fastness properties were examined using ISO standard methods. Conclusion:: All the compounds exhibited good to excellent fastness properties. The synthesized dyes and the dyed fabrics were screened biologically against Staphylococcus aureus ATCC 6538 and Escherichia coli ATCC 10536, resulting in significant antibacterial activities.

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3