Synthesis, Molecular Modeling of Novel Substituted Pyridazinones and their Vasorelaxant Activities

Author:

Ismail Magda M.F.1,Soliman Dalia H.S.1,Elmoniem Mona H. Abd1,Jaleel Gehad A.R. Abdel2

Affiliation:

1. Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt

2. Pharmacology Department, National Research Centre, Dokki, Giza 12622, Egypt

Abstract

Background: Hypertension, one of the most common cardiovascular diseases that can cause coronary disease, stroke, myocardial infarction, and sudden death, it is the major contributor to cardiac failure as well as renal insufficiency. Objectives: As there are many cardio-active pyridazinone-base derivatives in clinical use, therefore, we aimed to synthesize a new series of pyridazin-3-ones and evaluate their vasorelaxant activity. Methods: A new series of synthesized compounds were carried out first by the synthesis of 6- flouroarylpyridazinones by cyclization of 3-(4-flourobenzoyl) propionic acid with hydrazine hydrate or arylhydrazines to provide the corresponding pyridazinone derivatives 2a-d. Mannich reaction was performed using morpholine or piperidine formaldehyde to obtain compounds 3a,b. On the other hand, reaction of 2a with various chloroacetamide intermediates, in dimethylformamide and potassium carbonate as a catalyst, afforded the target compounds 5a-c. The aromatic acid hydrazide intermediates 6a-g were prepared in 50-90% yield, by reacting to the prepared esters with hydrazine hydrate under reflux in ethanol. The two compounds 8a,b were prepared via condensation of 7a,b with ethyl chloroacetate in dry acetone. Finally, the target 2,4,6-trisubstituted pyridazinones 9a-c derivatives were obtained by the reaction of 7a with the appropriate aromatic aldehyde or substituted acetophenones. The new compounds were then evaluated for their vasorelaxant properties using isolated thoracic rat aortic rings. In addition, a homology model was built and molecular modeling simulation of these compounds into the active sites of the newly created α1a-adrenoceptor model was performed in order to predict and rationalize their affinities toward this receptor. Results: Among these compounds; 5a was the most potent, it exhibited approximately two-times the activity of prazosin (IC50 = 0.250, 0.487 mmol, respectively) also, fourteen compounds were more potent than prazosin.

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery

Reference43 articles.

1. Oartes J.A.; Antihypertensive Agents and the Drug Therapy of HypertensionGoodman & Gilman’s The Pharmacological Basis of Therapeutics 9th ed.; Pergamon Press, 2001, Vol. 780, Section V.33.

2. Kung H.C.; Xu, J. Hypertension-related Mortality in the United States, 2000–2013. NCHS 2015,193,1-8

3. Sica D.A.; Carter B.; Cushman W.; Hamm L.; Thiazide and loop diuretics. J Clin Hypertens (Greenwich) 2011,13(9),639-643

4. Sever P.S.; Messerli F.H.; Hypertension management 2011: optimal combination therapy. Eur Heart J 2011,32(20),2499-2506

5. Dézsi C.A.; A review of clinical studies on angiotensin II receptor blockers and risk of cancer. Int J Cardiol 2014,177(3),748-753

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3