Synthesis, Molecular Docking Studies and Antibacterial Activities of Novel Monocationic Indole-benzimidazole Derivatives

Author:

Ates-Alagoz Zeynep1,Kisla Mehmet Murat1,Goker Hakan1,Yildiz Sulhiye2

Affiliation:

1. Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey

2. Department of Microbiology, Faculty of Pharmacy, Ankara University, Ankara, Turkey

Abstract

Background: Finding efficient therapy against hospital-acquired MRSA infections has become rather important in the last decade. To this end, inhibition of the enzyme pyruvate kinase (PK) is being investigated for antibacterial activity, since this enzyme controls energy generation and metabolic flux distribution. Our main scaffold consists of benzimidazole and indole rings fused together. Both rings are famous for antibacterial properties and promising anti-MRSA compounds include indole ring. Methods: Several 1-substituted-2-(1H-indol-3-yl)-N-substituted-1H-benzimidazole-5-carboxamidine analogues were developed, synthesized and their antibacterial activities were evaluated against Staphylococcus aureus (ATCC 25923), Methicillin resistant Staphylococcus aureus (MRSA) (ATCC 43300), and Staphylococcus epidermidis (ATCC 12228) by using tube dilution method. Molecular docking analysis with a characteristic protein called MRSA- Pyruvate Kinase has been conducted for the assessment of the activities of our compounds against Methicillinresistant S. aureus (MRSA). Results: Among all the tested compounds, the most potent compound 36 had MIC values as 3.12, 3.12 and 6.25 μg/mL against S. aureus, Methicillin-resistant S. aureus (MRSA), and S. epidermidis, respectively. This compound had much better docking energy value than standard ampicillin and also created the link between two residues in different monomers of PK. Discussion: This approach of using indol-amidine conjugate systems as anti-MRSA agents may include MRSA-PK as potential target. To further increase the affinity, some other H-bonding parts may be added. By doing so, another bridge with Ile361 residues on both sides can be created. Our compounds tend to violate log P limit of Lipinski, therefore some optimizations with formulation can be made. Conclusion: This study mainly includes the design, synthesis and optimization of indolebenzimidazole- amidine derivatives. Docking studies confirmed our results, since our most potent hit compound 36 created the necessary interactions between two chains of MRSA-PK. Further optimization can be considered to increase drug ability.

Funder

Secretaría de Investigación y Posgrado del Instituto Politécnico Nacional

CONACyT

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3