2, 4, 5-Trideoxyhexopyranosides Derivatives of 4’-Demethylepipodophyllotoxin: De novo Synthesis and Anticancer Activity

Author:

Lu Yapeng1,Zhu Li1,Cai Rui1,Li Yu1,Zhao Yu1

Affiliation:

1. School of Pharmacy, Nantong University, Nantong 226001,China

Abstract

Background: Podophyllotoxin is a natural lignan which possesses anticancer and antiviral activities. Etoposide and teniposide are semisynthetic glycoside derivatives of podophyllotoxin and are increasingly used in cancer medicine. Objective: The present work was aimed to design and synthesize a series of 2, 4, 5-trideoxyhexopyranosides derivatives of 4’-demethylepipodophyllotoxin as novel anticancer agents. Methods: A divergent de novo synthesis of 2, 4, 5-trideoxyhexopyranosides derivatives of 4’-demethylepipodophyllotoxin has been established via palladium-catalyzed glycosylation. The abilities of synthesized glycosides to inhibit the growth of A549, HepG2, SH-SY5Y, KB/VCR and HeLa cancer cells were investigated by MTT assay. Flow cytometric analysis of cell cycle with propidium iodide DNA staining was employed to observe the effect of compound 5b on cancer cell cycle. Results: Twelve D and L monosaccharides derivatives 5a-5l have been efficiently synthesized in three steps from various pyranone building blocks employing de novo glycosylation strategy. D-monosaccharide 5b showed highest cytotoxicity on five cancer cell lines with the IC50 values from 0.9 to 6.7 mM. It caused HepG2 cycle arrest at G2/M phase in a concentration-dependent manner. Conclusion: The present work leads to the development of novel 2, 4, 5-trideoxyhexopyranosides derivatives of 4’- demethylepipodophyllotoxin. The biological results suggested that the replacement of the glucosyl moiety of etoposide with 2, 4, 5-trideoxyhexopyranosyl is favorable to their cytotoxicity. D-monosaccharide 5b caused HepG2 cycle arrest at G2/M phase in a concentration-dependent manner.

Funder

Natural Science Foundation of Nantong City

large Instruments Open Foundation of Nantong University

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3