Synthesis and Biological Studies of New Multifunctional Curcumin Platforms for Anticancer Drug Delivery

Author:

Bazylevich Andrii1,Tuchinsky Helena2,Zigman-Hoffman Eti3,Weissman Ran3,Shpilberg Ofer3,Hershkovitz-Rokah Oshrat3,Patsenker Leonid1,Gellerman Gary1

Affiliation:

1. Department of Chemical Sciences, Ariel University, Ariel, 40700, Israel

2. Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ariel, Israel

3. Institute of Hematology, Assuta Medical Centers, Tel Aviv, Israel

Abstract

Background: Scientists have extensively investigated curcumin, yielding many publications on treatments of cancer. Numerous derivatives of curcumin were synthesized, evaluated for their anti-oxidant and free-radical scavenging, SAR, ADME properties and tested in anticancer applications. Objective: We decided to exploit curcumin as a bioactive core platform for carrying anticancer drugs, which likely possesses a carboxyl moiety for potential linkage to the carrier for drug delivery. Methods: The goal of this work is to develop biolabile multifunctional curcumin platforms towards anticancer drug delivery, including determination of drug release profiling in hydrolytic media, in vitro cytotoxicity, antioxidant properties and blockage of relevant cell survival pathways. Results: We report on a facile synthesis of the bioactive multifunctional curcumin-based platforms linked to a variety of anticancer drugs like amonafide and chlorambucil, and release of the drugs in a hydrolytic environment. The leading curcumin-based platform has presented antioxidant activity similar to curcumin, but with much more potent cytotoxicity in vitro in agreement with the augmented blockage of the NF-kB cell survival pathway. Conclusion: The approach presented here may prove beneficial for bioactive curcumin-based delivery applications where multiple drug delivery is required in a consecutive and controlled mode.

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3