Effects of Anti-Sclerostin Antibody Release from Porous Microparticles on Bone Resorption Inhibition of Osteoblasts

Author:

Watanabe Hajime12,Nakagawa Yasuhiro2ORCID,Ikoma Toshiyuki2ORCID,Hattori Shinya3,Minowa Takashi3,Hanagata Nobutaka3

Affiliation:

1. Orthopedics, Akabane Hospital, 2-2-1, Akabane, Kita-ku, Tokyo, 115-0045, Japan

2. Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro- ku, Tokyo, 152-8550, Japan

3. Molecule and Material Synthesis Platform, National Institutes for Materials Science 1-2-1 Sengen Tsukuba, Ibaraki 305-0047, Japan

Abstract

Background: Anti-sclerostin antibodies are among the most efficient drugs for the treatment of osteoporosis, and have been also expected for the treatment of local bone disorders. We have previously developed porous microparticles of hydroxyapatite and chondroitin sulfate loading anti-sclerostin antibodies formulated with zinc cations. However, the biological behavior and con-centration dependence of anti-sclerostin antibodies in vitro released from the microparticles remain unclear. Objective: Bolus administration and the subsequent release of anti-sclerostin antibodies from the microparticles formulated with or without zinc cations were investigated; bone-resorptive inhibitory effects on mouse MC3T3-E1 osteoblast function were revealed by cell culture using a cell culture insert plate. Methods: Differentiation induction culture of osteoblasts was performed after maintaining the concentrations of anti-sclerostin antibodies and sclerostin at previously reported concentrations of 5.0 and 1.0 µg/mL for the first 3 days. Subsequently, the medium was replaced with fresh medium that did not contain anti-sclerostin antibodies but microparticles loading anti-sclerostin antibodies (20 or 80 µg/mg) with or without zinc cations in the cell culture insert. After 11 days of incubation, the bioactivity of the osteoblasts was evaluated using the polymerase chain reaction method. Results: The formulation using zinc cations showed an increase of anti-sclerostin antibodies re-leased from the microparticles, which increased the expression of receptor activator of the nuclear factor kappa-B ligand in the osteoblasts on day 14. This result indicates the inhibition of sclerostin-mediated bone resorption. However, the increase of loading amounts of anti-sclerostin antibodies extremely enhanced the subsequent release of anti-sclerostin antibodies, which decreased the inhibition of bone resorption contrary to expectations. Conclusion: The moderately sustained release of anti-sclerostin antibodies from the microparticles can promote the inhibition of bone resorption in osteoblasts, supporting the potential of this formulation for the treatment of localized bone disorders.

Publisher

Bentham Science Publishers Ltd.

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3