Optimization of Reduction Time for Chemically Synthesized rGO

Author:

Paul Payal1,Limbu China1,Bisawas Joydeep2,Kabi Sanjib1,Misra Kamakhya Prakash3,Chattopadhyay Saikat3

Affiliation:

1. Department of Physics, Sikkim Manipal Institute of Technology, SMU, Sikkim, 737136, India

2. Department of Chemistry, Sikkim Manipal Institute of Technology, SMU, Sikkim, 737136, India

3. Department of Physics, School of Basic Sciences, Manipal University Jaipur, Jaipur 303007, Rajasthan, India

Abstract

Introduction: This article presents structural and morphological analysis for graphene oxide (GO) synthesized via Hummers' method and for reduced Graphene Oxide (rGO) prepared by chemical reduction. Graphene Oxide is synthesized from graphite powder at room temperature. Hydrazine hydrate is used as a reducing agent to reduce the accumulated GO. Method: To understand the impact of reduction time on structural parameters of produced rGO, three different time limits, i.e. 4, 5, and 6 hrs at 800 °C are used. FTIR spectra show the presence of all functional groups to confirm the authenticity of rGO samples. The XRD peaks are utilized to calculate different structural parameters for all the samples to identify the effect of reduction time. A change in the band gap energy may be noticed from UV-Vis absorption spectra. Result: It indicates that with the increase in reduction time, the absorption edge shifts to a lower wavelength value. FESEM micrographs reveal a flake-like random growth of rGO with prominent wrinkled structures, which is a signature of graphene-like 2D material. Conclusion: Hence, from the structural and absorption studies, it can be concluded that an increase in reduction time will produce smaller rGO flakes in the Hummers synthesis method.

Publisher

Bentham Science Publishers Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3