Improved Electrocatalytic Degradation of Alizarin Yellow R by Ti/Zr-SnO2/PbO2 Electrodes Doped with Ytterbium

Author:

Yang Bi1,Gao Guan-Jin2,Miao Qing-Dong2,Ergu Asha1,Liu Guo-Cong3,Zou Jiao3,Yu Jin-Gang1

Affiliation:

1. College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China

2. State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization, Pangang Group Research Institute Co. Ltd., Panzhihua 617000, Sichuan, China

3. School of Chemistry and Materials Engineering, Huizhou University, Huizhou Guangdong, 516007

Abstract

Introduction: Electrochemical oxidation of Alizarin Yellow R (AYR) was investigated on Ytterbium (Yb) doped Ti/PbO2 electrodes prepared by an electrodeposition method. Method: The etching of the Ti sheet by using a mixed acid of H2SO4 and TA (volume ratio= 2: 1) for 50 min at 100 °C could produce a suitable interface for further modification. The morphologies, composition, and electrochemical properties of Yb doping on the electrode were characterized by SEM (Scanning Electron Microscopy), EDS (Energy-Dispersive Spectroscopy), Cyclic Voltammetry (CV) and Electrochemical Impedance Spectroscopy (EIS). The introduction of an appropriate intermediate layer, Zr-SnO2, was performed. We also tried to fabricate Ytterbium (Yb) doped Ti/Zr-SnO2/PbO2 electrodes by an electrodeposition method on the intermediate layer of Zr-SnO2. The surface morphology of the Ti/Zr-SnO2/PbO2 electrode was changed due to the Yb doping, which affected the electrocatalytic activity of the modified electrode. Result: The developed Yb-doped Ti/Zr-SnO2/PbO2 electrode showed improved removal efficiencies toward AYR. Conclusion: The effects of current density and initial AYR concentration on the electrochemical oxidation of AYR by Yb-doped Ti/Zr-SnO2/PbO2 were investigated. The removal rate of AYR was 97.3% in 180 min under the conditions of the current density of 60 mA/cm2 , initial AYR concentration of 50.0 mg L-1 , and Na2SO4 concentration of 0.10 mol L-1 .

Publisher

Bentham Science Publishers Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3