The Cytotoxicity Effect of Chitosan-Encapsulated Ricin-Herceptin Immunotoxin Nanoparticles on Breast Cancer Cell Lines

Author:

Golestani Poor Mohammad Hossein1,Zare Karizi Shohreh2,Mirhosseini Seyed Ali1,Motamedi Mohammad Javad3,Frootan Fateme4,Khani Soghra5,Amani Jafar6ORCID

Affiliation:

1. Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran

2. Department of Biology, Varamin Pishva Branch, Islamic Azad University, Varamin 16517-16151, Iran

3. Green Gene Company, Tehran, Iran

4. Institute of Agricultural Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEN), Tehran, Iran

5. Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran

6. Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran

Abstract

Background:: The use of targeted therapy has been increasing for cancer treatment. The aim of this study is to investigate chitosan-based ricin-Herceptin (rh) immunotoxin on breast cancer cell lines. background: The targeted therapy is growing for cancer treatment. The aim here is to investigate a chitosan based Ricin-Herceptin (rh) immunotoxin on breast cancer cell lines. Methods:: The gene construct encoding immunotoxin was designed, cloned, and expressed in E. coli BL21 (DE3). The expressed proteins were isolated by the nickel-nitrilotriacetic acid column and were analyzed by the Western-blotting. The cytotoxicity of immunotoxin was assayed on breast cell line MCF-7 and using MTT assay at 24 and 48 h treatment. Results:: The immunotoxins extrication rate, size, loading percentage, and electric charge of nanoparticles were reported appropriately as 78%, 151.5 nm, 83.53%, and +11.1 mV, respectively. The encapsulated immunotoxins led to the death of 70% and 78% of MCF-7 cells at 24 and 48 h treatment, respectively. The noncapsulated counterparts at equal doses killed 53% and 62% of cancer cells at the same time points. Conclusion:: The chitosan-immunotoxins impose potential cytotoxic effects on cancer cells. other: Keywords: Herceptin, HER2, Ricin, Targeted therapy, Breast Cancer, Nanoparticles

Publisher

Bentham Science Publishers Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3