Synthesis of Polyaniline/BiPr Composite Oxide Nanowires with Enhanced Electrochemical Sensing Performance

Author:

Feng Chenxu1,Ban Zhangjie1,Huang Jianfeng1,Zhang Yong2,Cai Zhengyu1,Pei Lizhai1

Affiliation:

1. School of Materials Science and Engineering, Anhui University of Technology, Ma’anshan, Anhui 243002, P.R. China

2. Fujian Provincial Key Laboratory of Functional Materials and Applications, Xiamen University of Technology, Xiamen, Fujian 361024, P.R. China

Abstract

Background: Considerable interest has been devoted to electrochemical sensors for the detection of L-cysteine using BiPr-based oxide-modified electrodes due to high specific surface area and good electro-catalytic activity with several oxidation states. The combination of the BiPr composite oxide nanowires with polyaniline (PAn) can promote the electro-catalytic performance towards L-cysteine because PAn can facilitate the electro-catalytic process by enhancing the charge transfer. Methods: PAn/BiPr composite oxide nanowires were obtained via low temperature one-step hydrothermal route. The obtained composite oxide nanowires were analyzed by X-ray diffraction, electron microscopy, and electrochemical methods. Results: Characterization results indicate that amorphous PAn nanoparticles with a size of about 50 nm are homogeneously dispersed at the surface of the BiPr composite oxide nanowires. PAn/BiPr composite oxide nanowire-modified electrode shows an enhanced L-cysteine electro-catalytic activity. PAn promotes electro-catalytic activity of the BiPr composite oxide nanowires. A pair of quasi-reversible cyclic voltammetry (CV) peaks exist at +0.49 V, -0.19 V, respectively. PAn/BiPr composite oxide nanowire modified electrode possesses a linear response in L-cysteine concentration of 0.001-2 mM and detection limit of 0.095 μM, good repeatability, and stability. Conclusion: PAn/BiPr composite oxide nanowires act as effective electro-catalysts for L-cysteine oxidation resulting in the enhancement of the electro-catalytic activity relative to BiPr composite oxide nanowires.

Publisher

Bentham Science Publishers Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3