An Efficient and Cost-effective Modified Carbon Paste Electrodes for Diltiazem Hydrochloride Determination in Tablets

Author:

EL-Sanafery Safa S.1,Elshafei Mostafa F.2,Khalf Alla Perihan A.2,Mohamed Gehad Genidy23

Affiliation:

1. Department of Chemistry, Faculty of Science, Menuofia University, Giza, 12613, Egypt

2. Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt

3. Department of Nanoscience, Basic and Applied Sciences Institute, Egypt-Japan University of Science and Technology, New Borg El Arab, Alexandria, 21932, Egypt

Abstract

Background and Objective: This study presented new sensitive and selective modified carbon paste (MCPE) potentiometric sensors modified with different ion pairs for the determination of the antihypertensive drug diltiazem hydrochloride (DTM-HCl) in biological fluids, pharmaceutical preparations, and in its pure form. Methods: Plasticizers, ion pair type, ion pair content, response time, temperature, and pH were just a few of the experimental factors evaluated that were found to affect electrode efficiency. The two electrodes that show the best sensitivity were prepared by mixing diltiazem-tetraphenyl borate (DTM-TPB) ion pair, graphite, and TCP or o-NPOE as a plasticizer. Result: Over the concentration ranges of 1.0x10-5–1.0x10-2, the produced electrodes I and II demonstrated monovalent Nernstian responses of 55.7±0.902 and 57.6±0.451 mV decade-1. The selectivity property of the suggested electrodes was used to study the interference ions. The concentration of DTM-HCl in pharmaceutical formulations and biological fluids was measured using these modified electrodes. During the validation procedure, metrics like linearity, accuracy, precision, limit of detection, limit of quantification, and specificity were used. Conclusion: The obtained results showed good agreement with the HPLC technique as indicated by the F and t-test values and can conclude the possibility of using this potentiometric method in the routine analysis of DTM-HCl.

Publisher

Bentham Science Publishers Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3