Investigating Tattoo Pigments Composition with UV-Vis and FT-IR Spectroscopy supported by Chemometric Modelling

Author:

Singh Ajay Vikram1ORCID,Bansod Girija2,Schumann Angelina1,Bierkandt Frank S.1,Laux Peter1,Nakhale Sweta Vijay3,Shelar Amruta4,Patil Rajendra5,Luch Andreas1

Affiliation:

1. German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany

2. Rajiv Gandhi Institute of IT and Biotechnology, Bharati Vidyapeeth (deemed to be) University, Pune, 411045, India

3. PES's Modern College of Arts, Science and Commerce Ganeshkhind, Pune, Maharashtra, 411053, India

4. Department of Technology, Savitribai Phule Pune University, Pune, 411007, India

5. Department of Biotechnology, Savitribai Phule Pune University, Pune, 411007, India

Abstract

Aims: This study investigates the composition of tattoo pigments to ensure their safe application in tattoo art, evaluating the viability of UV-Vis and FT-IR spectroscopy, coupled with chemometrics, for predicting pigment contents in tattoo inks. Background: Analyzing pigments in tattoo inks poses challenges in maintaining quality. This study addresses the difficulties by proposing the use of UV-Vis and FT-IR spectroscopy, along with chemometrics, as potential solutions for effective monitoring. Objective: The aim of this study was to determine the content of red (PR) 170/254 and pigment blue (PB) 15:3 in tattoo inks from diverse suppliers and examine the distinct chemical structures and existing impurities in the samples using UV-Vis and FT-IR spectroscopy, employing regression models for data analysis. Method: We collected UV-Vis and FT-IR spectra from the tattoo ink samples and utilized regression models for data analysis. We assessed correlations across spectrum areas, emphasizing coefficients of determination for cross-validation. Subsequently, we compared the results obtained from both spectroscopic methods in terms of pigment identity and evaluated the suitability of UV-Vis spectroscopy for analyzing changes in pigment concentration and structural evolution. Finally, we employed chemometric modeling to enhance predictions of FT-IR parameters, particularly in the functional group and fingerprint region of the spectra. Results: Significant correlations were observed across both UV-Vis and FT-IR spectrum areas, with coefficients of determination for cross-validation exceeding 0.7 for most parameters. Both spectroscopic methods yielded nearly identical results regarding pigment identity. UV-Vis spectroscopy proved to be a suitable method for analyzing changes in pigment concentration and structural evolution. Chemometric modeling enhanced predictions of FT-IR parameters, particularly in the functional group and fingerprint region of the spectra. Conclusion: The study underscores the significance of utilizing UV-Vis and FT-IR wavelengths from various suppliers to determine pigment structures in tattoo inks. The consistent and comparable results from both spectroscopic methods highlight their efficacy in characterizing pigments. UV-Vis spectroscopy, in particular, emerged as a valuable tool for assessing changes in pigment concentration and structural evolution. The improved predictions through chemometric modeling further emphasize the utility of these analytical approaches in ensuring the safe use of tattoo inks in the art of tattooing.

Publisher

Bentham Science Publishers Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3