A Polyacrylate Cotton-based Pipette Tip Micro-solid-phase Extraction Technique Coupled with High-performance Liquid Chromatography for Carvedilol Determination in Aqueous Media

Author:

Poryan Golchin1,Noori Maedeh1ORCID,Talebpour Zahra12ORCID,Aboul-Enein Hassan Y.3

Affiliation:

1. Department of Analytical Chemistry, Faculty of Chemistry, Alzahra University, Vanak, Tehran, Iran

2. Analytical and Bioanalytical Research Centre, Alzahra University, Vanak, Tehran, Iran

3. Department of Pharmaceutical and Medicinal Chemistry, Pharmaceutical and Drug Industries Research Division, National Research Centre, Dokki, Giza, 12662, Egypt

Abstract

Introduction: In this work, a polyacrylate polymer was synthesized into a pipette tip containing cotton fibers and used to extract carvedilol from water and urine samples. Methods: A high-performance liquid chromatography-ultraviolet detection method was developed, which demonstrated the suitability of the purposed pipette tip micro-solid-phase extraction device. Factors affecting the fabrication procedure and polymer quality were studied and optimized. In the next step, the sample preparation process (including extraction and desorption) was fully optimized, and the optimized method was validated. Results: A coating with suitable mechanical and chemical stability was achieved. Its structure was successfully characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. Within-batch and between-batch fabrication reproducibility were obtained at 3.0 and 9.0 %, respectively. The developed method displayed a limit of detection of 1.1 µg L-1 when 1.5 mL of sample was processed, and it was linear in the concentration range of 3.3-350 µg L-1 with LLOQ of 5 µg L-1 . The polyacrylate cotton-based pipette tip was finally used to extract carvedilol from aqueous media with acceptable recoveries of 92-106%. Conclusion: The proposed method is simple and fast and requires low sample volumes. In addition, this method has been evaluated in terms of greenness with three different tools, and the evaluation results with all three tools have shown that this method is one of the green and environmentally friendly methods.

Publisher

Bentham Science Publishers Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3