Effect of Diosmin on Pharmacokinetics and Pharmacodynamics of Rivaroxaban in Rats

Author:

Wang Siwen1,Cui Mingyu1,Wu Fan1,Yu Chao1,Sui Yue1,Yan Xueying1,Gai Yingli1

Affiliation:

1. College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China

Abstract

Background and Objective: Rivaroxaban, a direct oral anticoagulant, has become the first-line therapy medicine to prevent and treat Venous Thromboembolism (VTE). Patients with femoropopliteal venous thrombosis may use rivaroxaban along with diosmin. Rivaroxaban is the substrate of CYP3A4 and P-glycoprotein (P-gp), but diosmin is the inhibitor. The combination might lead to Drug-drug Interaction (DDI). The aim of this study was to assess the effect of diosmin on the pharmacokinetics and pharmacodynamics of rivaroxaban in rats. Methods: Plasma concentration of rivaroxaban in the absence or presence of diosmin groups was determined by High-performance Liquid Chromatography (HPLC). Pharmacokinetics parameters were calculated and used to evaluate pharmacokinetics interactions. Anticoagulation was investigated by Prothrombin Time (PT), International Normalized Ratio (INR), and Activated Partial Thromboplastin Time (APTT). Antithrombotic efficacy was investigated by the length of tail thrombosis, the content levels of Interleukin-1β (IL-1β) and D-dimer (D-D) in rats, and histopathological sections in the tail thrombosis model. Results: Maximum concentration (Cmax), 0-t Area Under the Curve (AUC0–t), 0-∞ Area Under the Curve (AUC0–∞) of rivaroxaban increased significantly in the combination group. PT, INR, and APPT in the combination group exhibited an increase compared to the Rivaroxaban group. Simultaneously, the length of tail thrombosis and levels of IL-1β and D-D were significantly reduced. Significant improvement of tissue histology in tail thrombosis could be observed. Conclusion: Taken together, diosmin could significantly affect the pharmacokinetics and pharmacodynamics of rivaroxaban, and enhance anticoagulant and antithrombotic efficacy in rats. More attention should be paid to avoid harmful DDI in the clinic.

Publisher

Bentham Science Publishers Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3