Applicability of QbD-assisted Analytical Method for Simultaneous Detection of Tetrahydrocurcumin and Folic Acid in Developed Nanostructured Lipid Carriers

Author:

Kumari Parina12,Beg Sarwar3,Singh Kamalinder K.34,Kakkar Vandita1

Affiliation:

1. Department of Pharmaceutics, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India

2. School of Pharmacy and Biomedical Sciences, University of Central Lancashire, PR1 2HE, United Kingdom;

3. School of Pharmacy and Biomedical Sciences, University of Central Lancashire, PR1 2HE, United Kingdom

4. Biomedical Evidence-based Transdisciplinary Health Research Institute, University of Central Lancashire, Preston PR1 2HE, United Kingdom

Abstract

Aims: Applicability of QbD-assisted analytical method for simultaneous detection of tetrahydrocurcumin and folic acid in developed nanostructured. Background: Diabetic foot ulcer (DFU) is a multifactorial disorder that involves chronic inflammation, oxidative stress and neuropathy. Current treatment therapies involving the use of growth factors and skin substitutes being costly, are out of reach for the majority of patients. The present research explored the usefulness of (5929IN008, application number 202211045937), a combination of tetrahydrocurcumin and folic acid-loaded nanostructured lipidic carriers. Objectives: To develop and validate a QbD-assisted method for simultaneous analysis of tetrahydrocurcumin (THC) and folic acid (FA). Applicability of the above method to determine total drug content (TDC) and entrapment efficiency (EE) of nanostructured lipid carriers (NLCs) loaded THC and FA. Methods: A high-performance liquid chromatographic (HPLC) method was developed, optimized and validated using Box-Behnken design for improved method performance. Chromatographic separation was conducted on a Supelco 250 x 4.6 mm (5 μm) column with optimized mobile phase composition containing tetrahydrofuran: citric acid buffer pH 3.5 (50:50) at a flow rate of 0.4 mL.min-1 and diode array detection between 210 and 360 nm. Results: The method developed in a concentration range of 1 to 100 μg.mL-1 was found to be linear (R2 0.999, p≤0.001), accurate (99.10-101.70%) and precise with high recovery values in intra and inter-day results. The system adaptability and robustness evaluation revealed that the percent recovery ranged from 96.90 to 102.80%, and the percent relative standard deviation (%RSD) values were less than 2%. Moreover, the method was further applied for the determination of TDC (86±6% and 96±8%) and drug EE (81±21% and 73±13%) for THC and FA, respectively. Conclusion: The investigation indicated the applicability of the developed and validated method for the estimation of THC and FA in the developed nanostructured lipidic carriers.

Publisher

Bentham Science Publishers Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3