A Short Appraisal on Nano-biosensors for Epigenetic Changes Detection: A Transformative Innovation

Author:

Singh Dilpreet12

Affiliation:

1. University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali (140413), India

2. University Centre for Research and Development, Chandigarh University, Gharuan, Mohali (140413), India

Abstract

Abstract: This mini-review article focuses on the recent advancements in nano-biosensors for the detection of epigenetic changes, a burgeoning field at the intersection of nanotechnology and cancer diagnostics. Epigenetic modifications, including DNA methylation, histone modification, and non-coding RNA expression, play a crucial role in cancer progression and drug resistance. The advent of nano-biosensors has introduced highly sensitive and specific methods for detecting these changes, surpassing the capabilities of traditional diagnostic tools. This article delves into various nano-biosensors, such as gold nanoparticles, quantum dots, carbon nanotubes, and graphene oxide sensors, highlighting their unique properties and applications in detecting epigenetic markers. It emphasizes the significance of early and accurate detection of epigenetic alterations in cancer, which opens new pathways for early diagnosis, monitoring treatment efficacy, and developing personalized therapeutic strategies. The review also addresses the technical challenges and limitations of current nano-biosensor technologies, including issues related to sensitivity, specificity, and biocompatibility. Furthermore, it explores the ethical and safety considerations in the clinical application of these nanotechnologies. The discussion extends to the potential future developments in this field, emphasizing interdisciplinary research and the integration of artificial intelligence for data analysis. This comprehensive overview of nano-biosensors for epigenetic change detection underscores their transformative potential in cancer research, offering insights into their current state, challenges, and future prospects in advancing personalized cancer care.

Publisher

Bentham Science Publishers Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3