All-trans Retinoic Acid Increased Transglutaminase 2 Expressions in BV-2 Cells and Cultured Astrocytes

Author:

Takano-Kawabe Katsura1,Izumo Tatsuhiko2,Minamihata Tomoki Minamihata2,Moriyama Mitsuaki1

Affiliation:

1. Laboratory of Integrative Physiology in Veterinary Sciences, Osaka Metropolitan University, Osaka, Japan

2. Laboratory of Integrative Physiology in Veterinary Sciences, Osaka Prefecture University, Osaka, Japan

Abstract

Background:: Activation of microglia and astrocytes has been observed in Alzheimer’s disease (AD). Transglutaminase 2 (TG2) is reported to be activated in AD and involved in cell proliferation, differentiation, and inflammation. Moreover, amyloid β (Aβ) aggregation is detected as a characteristic pathology in the AD brain, and is known to be a substrate of TG2. All-trans retinoic acid (ATRA) can modify cell proliferation and differentiation, and is reported to have therapeutic effects on AD pathology. Objective:: We aimed to assess the effects of ATRA in microglia and astrocytes on TG2 expression and glial functions. Methods:: After treatment with ATRA, TG2 expression and TG activity were assayed in both murine microglia BV-2 cells and cultured rat brain astrocytes. Endocytosis activity in BV-2 cells and Aβ aggregation by astrocytes conditioned medium were also assessed. Results:: In both BV-2 cells and cultured astrocytes, ATRA increased TG2 expression and TG activity. The increase was blocked by AGN194310, an RA receptor antagonist. ATRA enhanced the endocytosis activity in BV-2 cells, and the addition of AGN194310 reversed it. The addition of cystamine, a competitive TG inhibitor, also reduced ATRA-enhanced endocytosis activity. On the other hand, Aβ aggregation was potentiated by ATRA-treated astrocytes conditioned medium compared to control astrocytes conditioned medium. Conclusion:: These results suggest that ATRA increased TG2 expression and TG activity via RA receptor in microglia and astrocytes. ATRA-enhanced TGs might be involved in phagocytosis and Aβ aggregation. Adequate control of TGs expression and function in microglia and astrocytes can be an important factor in AD pathology.

Funder

JSPS KAKENHI

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,Pharmacology,Molecular Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3