Myristic Acid Solid Lipid Nanoparticles Enhance the Oral Bioavailability and Therapeutic Efficacy of Rifaximin against MRSA Pneumonia

Author:

Zhang Yumin1,Zhang Aoxue12,Chen Dongmei1,Xie Shuyu1234

Affiliation:

1. National Reference Laboratory of Veterinary Drug Residues (HZAU), Wuhan, Hubei 430070, China

2. National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China

3. Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, China

4. Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China

Abstract

Background: Methicillin-resistant Staphylococcus aureus (MRSA) pneumonia is one of the leading causes of death and an immense financial burden on healthcare systems. Rifaximin (RFX) has good antibacterial activity against MRSA, but its clinical application is limited due to its poor oral absorption. Solid lipid nanoparticles have good biocompatibility, high drug loading, sustained release performance, and the inertia of lipids in gastric acid, which facilitates oral drug delivery. Objective: In order to improve the oral bioavailability of rifaximin and expand the clinical application of RFX for MRSA pneumonia, this study developed RFX-loaded myristic acid solid lipid nanoparticles (RFX-SLNs). Methods: This study first prepared RFX-SLNs through hot melt emulsification and ultrasonic methods and selected the optimal formula of RFX-SLNs through single-factor screening. Afterward, the particle size, zeta potential, and polydispersity index (PDI) of the RFX-SLNs were measured, the morphology of RFX-SLNs was observed by transmission electron microscopy, and the encapsulation efficiency (EE) and drug loading capacity (LC) of RFX-SLNs were detected by high-performance liquid chromatography. Then, the sustained release ability and oral bioavailability of RFX-SLNs were studied through in vitro release and pharmacokinetics. Finally, the therapeutic effect of RFX-SLNs on MRSA pneumonia infection was studied by using a mouse MRSA pneumonia infection model. Results: The optimal formulation of RFX-SLNs was 1% RFX with water (3% PVA) and oil (myristic acid) ratio of 1:19. RFX-SLNs were spherical in shape with a smooth surface and uniform size. The EE and LC of three different batches of RFX-SLNs were 89.35±2.47%, 90.45±3.69%, 88.72±1.18%, and 9.50 ± 0.01%, 10.09±0.01%, and 9.68±0.00%, respectively. In vitro release and pharmacokinetic studies showed that the myristic acid solid lipid nanoparticles showed excellent sustained release as expected and increased the oral bioavailability of RFX by 2.18 times. This indicates that RFX-SLNs can be used for the oral treatment of bacterial infections. Compared to RFX, RFX-SLNs showed good therapeutic effects in a mouse MRSA pneumonia infection model Conclusion: This study indicates that the myristic acid solid lipid nanoparticles might be an effective way to enhance the oral absorption and therapy effects of RFX and other insoluble drugs. This not only opens up avenues for the clinical application of RFX but also provides a way for the development of new dosage forms of water-soluble drugs and the expansion of their clinical application scope.

Publisher

Bentham Science Publishers Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3