Microwave-assisted Synthesis of Novel Triazolyl Pyrazolyl Pyrazoline Substituted Coumarins and Their Antimicrobial Activity

Author:

Brahmbhatt Dinker I.1ORCID,Kundaliya Kaushik N.2ORCID,Patel Niraj H.3ORCID

Affiliation:

1. Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar-388120, Gujarat, India

2. Department of Chemistry, Government Science College, Vankal, Surat, Gujarat-394430, India

3. Organic Chemistry Department, Institute of Science & Technology for Advanced Studies & Research (ISTAR), CVM University, Vallabh Vidyanagar-388120, Gujarat, India

Abstract

Background: The 1,2,3-triazole, pyrazole, and coumarin-based derivatives have received much attention due to their wide coverage of biological properties. The present work describes the microwave synthesis of novel triazolyl pyrazolyl pyrazoline substituted coumarins. The structures of all the newly synthesized compounds are characterized by spectral analysis and screened for their in vitro antimicrobial activity by the Broth dilution method. Methods: Using the synthetic method, the targets were prepared by reacting various 3-{3-[3-(5- methyl-1-aryl-1H-1,2,3-triazol-4-yl)-1-phenyl-1H-pyrazol-4-yl]acryloyl} coumarins (coumarin chalcones) (3a-d) with hydrazine hydrate or aryl hydrazine (5a-c) in the presence of acetic/propionic acid under microwave irradiation. Results: The structures of all the synthesized compounds were established by IR, 1H-NMR, 13CAPT, and selected mass spectral data. The target compounds were also screened for their in vitro antimicrobial efficiency against a representative panel of pathogenic strains, specifically Gram-positive bacteria (Staphylococcus aureus,italic> Bacillus subtilis), Gram-negative bacteria (Escherichia coli, Salmonella typhi), and Fungi (Candida albicans, Aspergillusniger). Conclusion: In conclusion, the target compounds were obtained by Microwave Irradiation (MWI) technique in good yield with a short reaction time. Among all the synthesized compounds, 4c, 4h, 6a, 6h, and 6l were found to have significant activity against bacterial and fungal strains.

Publisher

Bentham Science Publishers Ltd.

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3